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(I) INTRODUCTION (BOOK CHAPTER 1) 
 
What is Fluid Mechanics? 
 
First, what is a fluid?  

• Three common states of matter are solid, liquid, and gas. 
• A fluid is either a liquid or a gas. 
• If surface effects are not present, flow behaves similarly in all common fluids, whether gases 

or liquids. 
• Formal definition of a fluid - A fluid is a substance which deforms continuously under the 

application of a shear stress. 
o Definition of stress - A stress is defined as a force per unit area, acting on an 

infinitesimal surface element. 
o Stresses have magnitude and are associated with two directions, one for the stress 

itself, and one for the surface on which the stress acts. 
o There are normal stresses and tangential stresses. 

 

 

 

 

 

o Pressure is an example of a normal stress, and acts inward, toward the surface, and 
perpendicular to the surface. 

o A shear stress is an example of a tangential stress, i.e. it acts along the surface, 
parallel to the surface. Friction due to fluid viscosity is the primary source of shear 
stresses in a fluid. 

o One can construct a free body diagram of a little fluid particle to visualize both the 
normal and shear stresses acting on the body: 

 

Free body diagram for a fluid 
particle at rest. 

Consider a tiny fluid element (a very small chunk of the 
fluid) in a case where the fluid is at rest (or moving at 
constant speed in a straight line). A fluid at rest can have 
only normal stresses, since a fluid at rest cannot resist a 
shear stress. In this case, the sum of all the forces must 
balance the weight of the fluid element. This condition is 
known as hydrostatics. Here, pressure is the only normal 
stress which exists. Pressure always acts positively inward. 
Obviously, the pressure at the bottom of the fluid element 
must be slightly larger than that at the top, in order for the 
total pressure force to balance the weight of the element. 
Meanwhile, the pressure at the right face must be equal to 
that on the left face, so that the sum of forces in the 
horizontal direction is zero. [Note: This diagram is two-
dimensional, but an actual fluid element is three-
dimensional. Hence, the pressure on the front face must 
also balance that on the back face.]  
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Free body diagram for a fluid 
particle in motion. 

Consider a tiny fluid element (a very small chunk of the 
fluid) that is moving around in some flow field. Since the 
fluid is in motion, it can have both normal and shear 
stresses, as shown by the free body diagram. The vector 
sum of all forces acting on the fluid element must equal the 
mass of the element times its acceleration (Newton's 
second law). Likewise, the net moment about the center of 
the body can be obtained by summing the forces due to 
each shear stress times its moment arm. [Note: To obtain 
force, one must multiply each stress by the surface area on 
which it acts, since stress is defined as force per unit area.] 

 
o Fluids at rest cannot resist a shear stress; in other words, when a shear stress is 

applied to a fluid at rest, the fluid will not remain at rest, but will move because of the 
shear stress. 

o For a good illustration of this, consider the comparison of a fluid and a solid under 
application of a shear stress: A fluid can easily be distinguished from a solid by 
application of a shear stress, since, by definition, a fluid at rest cannot resist a shear 
stress.  If a shear stress is applied to the surface of a solid, the solid will deform a little, 
and then remain at rest (in its new distorted shape). One can say that the solid (at rest) 
is able to resist the shear stress.  Now consider a fluid (in a container). When a shear 
stress is applied to the surface of the fluid, the fluid will continuously deform, i.e. it 
will set up some kind of flow pattern inside the container. In other words, one can say 
that the fluid (at rest) is unable to resist the shear stress. That is to say, it cannot 
remain at rest under application of a shear stress.  

 

 

 

 

 

 

Next, what is mechanics?  
• Mechanics is essentially the application of the laws of force and motion. Conventionally, it is 

divided into two branches, statics and dynamics. 
•  

  So, putting it all together, there are two branches of fluid mechanics:  
• Fluid statics or hydrostatics is the study of fluids at rest. The main equation required for this 

is Newton's second law for non-accelerating bodies, i.e..  
• Fluid dynamics is the study of fluids in motion. The main equation required for this is 

Newton's second law for accelerating bodies, i.e. also F=0 for steady motion. 



 3 

(II) PROPERTIES OF FLUIDS (BOOK CHAPTER 1) 

A. Density, Specific Weight, Relative Density  

Density (r) = mass per unit volume of substance = dm/dv; [r] = [ML-3].  

Specific weight (g) = force exerted by the earth's gravity upon a unit volume of the substance = rg; 
[g] = [ML-2T-2].  

Relative density (specific gravity) = ratio of mass density of the substance to that of water at a 
standard temperature and pressure = r/rw (non-dimensional).  

B. Viscosity  

Viscosity is a measure of the importance of friction in 
fluid flow. 

Consider, for example, a fluid in two-dimensional steady 
shear between two parallel plates, as shown below. The 
bottom plate is fixed, while the upper plate is moving at a 
steady speed of U.  

The top plate will drag the fluid along with it to the right.  

Also notice that the velocity of the fluid matches that of the wall at both the top and bottom walls. 
This is known as the no slip condition. 
 
It turns out (we will prove this at a later date) that the velocity profile, u(y) is linear, i.e. . 
 

From page 1, we learnt that a definition of shear stress is given by 𝜏 = F/A.  But it does not give 
much information for fluid properties. 

To give much information about the fluid, people have given an alternative definition for shear stress 

  
 

where the constant of proportionality µ (Greek letter "mu") is called the coefficient of viscosity.  
Fluids that follow the above relation are called Newtonian fluids. The coefficient of viscosity is also 
known as dynamic viscosity; its dimensions are                                while its SI units are                  . 

Sometimes, it is more convenient to use kinematic viscosity, denoted by Greek letter "nu", which is 
simply defined as the viscosity divided by density, i.e.  

 

 

Kinematic viscosity has the dimensions                                      , and its SI units are                 .  

( ) /u y Uy b=
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C. Surface Tension 

Surface tension is a property of liquids which is felt at the interface between the liquid and another 
fluid (typically a gas). Surface tension has dimensions of                                                                , 
and always acts parallel to the interface.. 

A soap bubble is a good example to illustrate the effects of surface tension. How does a soap bubble 
remain spherical in shape? The answer is that there is a higher pressure inside the bubble than 
outside, much like a balloon. In fact, surface tension in the soap film acts much the same as the 
tension in the skin of a balloon.  

Consider a soap bubble of radius R with internal pressure  and external (atmospheric) pressure 
.  The excess pressure   can be found by 

considering the free-body diagram of half a bubble.  Note that 
surface tension acts along the circumference (resulting from cutting 
across the two interfaces) and the pressure acts on the area of the 
half-bubble.  By statics (to be explained later), the net force due to 
the pressure is equal to the pressure times the projected area.  Hence, 
balancing the forces due to surface tension and pressure difference: 

 

 

 

 

where  is the surface tension of the fluid in air. 

You may repeat this exercise for a droplet, and show that 

inp

outp bubble in outP P PD = -

ss

Typically, as temperature increases, the 
viscosity will decrease for a liquid, but will 
increase for a gas. 

 The fluid is non-Newtonian if the 
relation between shear stress and shear 
strain rate is non-linear. 
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D. Vapor Pressure  

Vapor pressure is defined as the pressure at which a liquid will boil (vaporize). Vapor pressure rises 
as temperature rises. For example, suppose you are camping on a very high mountain (10,000 ft.).  
The atmospheric pressure at this elevation is about 70 kPa.  One can find that at a temperature of 
around 90oC, the vapor pressure of water is also about 70 kPa. From this it can be inferred that at 
10,000 ft. of elevation, water boils at around 90oC, rather than the common 100oC at standard sea 
level pressure. This has consequences for cooking. For example, eggs have to be cooked longer at 
elevation to become hard-boiled since they cook at a lower temperature. A pressure cooker has the 
opposite effect. Namely, the tight lid on a pressure cooker causes the pressure to increase above the 
normal atmospheric value. This causes water to boil at a temperature even greater than 100oC; eggs 
can be cooked a lot faster in a pressure cooker!  

Vapor pressure is important to fluid flows because, in general, pressure in a flow decreases as 
velocity increases. This can lead to cavitation, which is generally destructive and undesirable. In 
particular, at high speeds the local pressure of a liquid sometimes drops below the vapor pressure of 
the liquid. In such a case, cavitation occurs. In other words, a "cavity" or bubble of vapor appears 
because the liquid vaporizes or boils at the location where the pressure dips below the local vapor 
pressure. Cavitation is not desirable for several reasons. First, it causes noise (as the cavitation 
bubbles collapse when they migrate into regions of higher pressure). Second, it can lead to 
inefficiencies and reduction of heat transfer in pumps and turbines (turbomachines). Finally, the 
collapse of these cavitation bubbles causes pitting and corrosion of blades and other surfaces nearby.  
The left figure below shows a cavitating propeller in a water tunnel, and the right figure shows 
cavitation damage on a blade. 

  

 

 

 

 

 

E. Compressibility  

All fluids are compressible under the application of external forces. The compressibility of a fluid is 
expressed by its bulk modulus of elasticity E, which is the ratio of the change in unit pressure to the 
corresponding volume change per unit volume.  

 

Note that the bulk modulus of elasticity has the same dimensions as pressure: [E] = [ML-1T-2].  

For water at room temperature, E is approximately 2.2 ´ 109 N/m2, while for air at atmospheric 
pressure the isentropic bulk modulus of elasticity is approximately 1.4´ 105 N/m2. That is, air is 
typically four orders of magnitude more compressible than water.  

/ /
P PE
V V r r
D D

= =
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For most practical purposes liquids may be regarded as incompressible. However, there are certain 
cases, such as unsteady flow in pipes (e.g., water hammer), where the compressibility should be 
taken into account.  Gases may also be treated as incompressible if the change in density is very 
small (typically less than 3%). 

An ideal fluid is an incompressible fluid.  

Pressure disturbances imposed on a fluid move in waves. These pressure waves move at a velocity 
equal to that of sound through the fluid. The velocity, or celerity, c, is given by  
  

Compressibility is important to high-speed air flow when the Mach number (= velocity of 
flow/sound speed = V/c) is larger than 0.3 

F. Perfect Gas Law  

Very often we have fluid flows of gases at, or near, atmospheric pressure. In these cases, the changes 
in pressure p, density r and absolute temperature T of a gas particle may be related accurately to each 
other by the perfect (or ideal) gas law:  

 

where R is called the perfect gas constant, Rg is the Universal gas constant and Mg is the gas 
molecular weight.  

The universal gas constant is Rg @ 8.31 J/mol× K @ 0.082 L×atm/mol×K.  

The perfect gas law alone is insufficient to explain how the properties of a gas change as it moves. In 
addition, the laws of thermodynamics must be invoked. Compressible flows are inherently 
complicated because the laws of thermodynamics, as well as the laws of fluid mechanics, operate 
simultaneously.  

G. Concluding Remarks 

Fluid mechanics represents that branch of applied mechanics dealing with the behavior of 
fluids at rest and in motion. In the development of the principles of fluid mechanics, some fluid 
properties play principal roles, other only minor roles or no roles at all for a particular problem. In 
fluid statics, weight is the important property, whereas in fluid flow, density and viscosity are 
predominant properties. Where appreciable compressibility occurs, principles of thermodynamics 
must be considered. Vapor pressure becomes important when low gauge pressures are involved, and 
surface tension affects static and flow conditions in small passages.  

 

 

 

c E / r=

,           where    /g gp RT R R Mr= =
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(III) FLUID STATICS (BOOK CHAPTER 2) 

Hydrostatics is the study of pressures throughout a fluid at rest and the pressure forces on finite 
surfaces. As the fluid is at rest, there are no shear stresses in it. Hence the pressure at a point on a 
plane surface always acts normal to the surface, and all forces are independent of viscosity. The 
pressure variation is due only to the weight of the fluid. As a result, the controlling laws are 
relatively simple, and analysis is based on a straightforward application of the mechanical principles 
of force and moment. Solutions are exact and there is no need to have recourse to experiment.  

A. Introduction to Pressure  

Pressure always acts inward normal to any surface (even 
imaginary surfaces as in a control volume).  

Pressure is a normal stress, and hence has dimensions of force per 
unit area, or [ML-1T-2].  In the English system of units, pressure is 
expressed as "psi" or lbf/in2. In the Metric system of units, pressure 
is expressed as "pascals" (Pa) or N/m2.  

Standard atmospheric pressure is 101.3 kPa or 14.69 psi.  

Pressure is formally defined to be 

  

where  is the normal compressive force acting on an infinitesimal 
area . 

B. Pressure at a Point 

 

 

 

 

 

 

 

By considering the equilibrium of a small triangular wedge of fluid extracted from a static fluid body, 
one can show that for any wedge angle q, the pressures on the three faces of the wedge are equal in 
magnitude: 

 

This result is known as Pascal's law, which states that the pressure at a point in a fluid at rest, or in 
motion, is independent of direction as long as there are no shear stresses present. 

0
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Proof of Pascal’s law: 
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Pressure at a point has the same magnitude in all 
directions, and is called isotropic. 

 

 
C. Pressure Variation with Depth 

 

 

 

 

 

 

 

Consider a small vertical cylinder of fluid in equilibrium, where positive z is pointing vertically 
upward. Suppose the origin  is set at the free surface of the fluid. Then the pressure variation at 
a depth z = -h below the free surface is governed by 

                           
 
 
 
Therefore, the hydrostatic pressure increases with depth at the rate of the specific weight  of 
the fluid. 

Homogeneous fluid: r is constant  

By simply integrating the above equation:  

 
 

where C is an integration constant. When z = 0 (on the free surface),  (the atmospheric 
pressure).  Hence,  

 

0z =

gg rº

0p C p= =

  Dz 

p+Dp 

p 

W 
cross sectional 
area = A 

z 

0 
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Pressure given by this equation is called ABSOLUTE PRESSURE, i.e., measured above perfect 
vacuum.  

However, for engineering purposes, it is more convenient to measure the pressure above a datum 
pressure at atmospheric pressure. By setting  = 0,  

 
 
 
 
 

Pressure given by this equation is called GAUGE (GAGE) PRESSURE.  

The equation derived above shows that when the density is constant, the pressure in a liquid at rest 
increases linearly with depth from the free surface. 

Consequently, the distribution of pressure acting on a submerged flat 
surface is always trapezoidal (or triangular if the surface pierces through 
the free surface of the liquid and the pressure is gauge pressure). 

Also, the pressure is the same at all points with the same depth from the 
free surface regardless of geometry, provided that the points are 
interconnected by the same fluid.  However, the thrust due to pressure is 
perpendicular to the surface on which the pressure acts, and hence its 
direction depends on the geometry. 

 

 

 

 

 

 

 

0p
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(Optional) Compressible fluid: r varies with depth  

Example: Find the relationship between pressure and altitude in the atmosphere near the Earth's 
surface. For simplicity, neglect the vertical temperature gradient. Let temperature T = 288 K (15oC) 
and pressure p0 = 1 atm at the surface. The average molecular weight of air is Mg = 28.8 g/mol. The 
Universal gas constant is Rg = 8.3 J/mol× K.  

Solution: Let the altitude above the Earth's surface be denoted by z, then  

 

Assume that air is a perfect gas, its density varies with pressure according to  

 

Combining the above two equations, and integrate:  

 

  

Neglecting temperature variation, the exponential decay rate for pressure with height is,  

 

Say, at 2000 ft or 610 m above the Earth's surface, the pressure is  

 

That is, for such a high elevation, the pressure drops only by 7%.  (Note that temperature cannot be 
considered constant if this calculation is performed for large altitude differences.)  

In most practical problems where the change in elevation is not extremely large, atmospheric 
pressure can be assumed to be constant.  
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D. Hydrostatic Pressure Difference Between Two Points  

For a fluid with constant density,  

 

It is easily remembered by thinking about scuba diving. As a diver goes down, the pressure on his 
ears increases. So, the pressure "below" is greater than the pressure "above."  

There are several "rules" or comments which directly result from the above equation:  

• If you can draw a continuous line through the same fluid from point 1 to point 2, then p1 = 
p2 if z1 = z2.  

For example, consider the oddly shaped container: 

 
 
 
 
 
 
 
 

• Any free surface open to the atmosphere has atmospheric pressure, p0. 

(This rule holds not only for hydrostatics, but for any free surface exposed 
to the atmosphere, whether the surface is moving, stationary, flat, or mildly 
curved.) Consider the hydrostatics example of a container of water:  

 

 

 

• The shape of a container does not matter in hydrostatics. 

(Except of course for very small diameter tubes, 
where surface tension becomes important.) 
Consider the three containers in the figure below:  

At first glance, it may seem that the pressure at 
point 3 would be greater than that at point 1 or 2, 
since the weight of the water is more "concentrated" 
on the small area at the bottom, but in reality, all 
three pressures are identical. Use of our hydrostatics 
equation confirms this conclusion, i.e.  
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• Pressure in layered fluid. 

For example, consider the container in the figure below, which is partially filled with mercury, 
and partially with water:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In this case, our hydrostatics equation must be used twice, once in each of the liquids  

 
 
 
 
 
 

 
Shown on the right side of the above figure is the distribution of pressure with depth across the two 
layers of fluids, where the atmospheric pressure is taken to be zero .  Note that: 

• The pressure is continuous at the interface between water and mercury. Therefore, , which 
is the pressure at the bottom of the water column, is the starting pressure at the top of the 
mercury column. The pressure  can also be regarded as the water surcharge pressure 
superimposed onto (uniformly transmitted to, and felt at any depth by) the mercury below.  

• The vertical gradient of the pressure distribution is equal to the specific weight of the fluid . 
Therefore, the pressure in mercury increases with depth at a rate 13.6 times faster than that in 
water since . 

The fact that the pressure (or known as surcharge) applied to a 
confined fluid increases the pressure throughout the fluid by the 
same amount has important applications, such as in the hydraulic 
lifting of heavy objects: 

 

 

0 0p =
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g
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E. Pressure Measurement and Manometers 

• Piezometer tube 

The simplest manometer is a tube, open at the top, which is attached to a 
vessel or a pipe containing liquid at a pressure (higher than atmospheric) to 
be measured.  This simple device is known as a piezometer tube. As the tube 
is open to the atmosphere the pressure measured is relative to atmospheric 
so is gauge pressure:   

This method can only be used for liquids (i.e. not for gases) and only when 
the liquid height is convenient to measure. It must not be too small or too large and pressure 
changes must be detectable.  

• U-tube manometer 

This device consists of a glass tube bent into the shape of a "U", 
and is used to measure some unknown pressure. For example, 
consider a U-tube manometer that is used to measure pressure pA 
in some kind of tank or machine.  

Again, the equation for hydrostatics is used to calculate the 
unknown pressure. Consider the left side and the right side of the 
manometer separately:  

 

Since points labeled (2) and (3) in the figure are at the same elevation in the same fluid, they are 
at equivalent pressures, and the two equations above can be equated to give  

 

Finally, note that in many cases (such as with air pressure being measured by a mercury 
manometer), the density of manometer fluid 2 is much greater than that of fluid 1. In such cases, 
the last term on the right is sometimes neglected. 

• Differential manometer 

A differential manometer can be used to measure the 
difference in pressure between two containers or two 
points in the same system. Again, on equating the 
pressures at points labeled (2) and (3), we may get an 
expression for the pressure difference between A and B: 

 
In the common case when A and B are at the same 
elevation and the fluids in the two 

containers are the same , one may show that 
the pressure difference registered by a differential manometer is given by 

 

( )1 2 3h h h= +

( )1 3g g=
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where  is the density of the manometer fluid,  is the density of the fluid in the system, and 
 is the manometer differential reading. 

 

• Inclined-tube manometer 

 

 

 

 

 

 

As shown above, the differential reading is proportional to the pressure difference.  If the 
pressure difference is very small, the reading may be too small to be measured with good 
accuracy. To increase the sensitivity of the differential reading, one leg of the manometer can be 
inclined at an angle , and the differential reading is measured along the inclined tube. As shown 
above, , and hence 

 

Obviously, the smaller the angle , the more the reading  is magnified. 

• Multifluid manometer 

The pressure in a pressurized tank is measured by a multifluid manometer, as is shown in the figure.  
Show that the air pressure in the tank is given by 

 

mr r
h

q
2 2 sinh q= !

q 2!
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F. Hydrostatic Force on a Plane Surface 

Suppose a submerged plane surface is inclined at an angle q  to the free surface of a liquid  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notation:-  

 -  area of the plane surface 
- the line where the plane in which the surface lies intersects the free surface, 

C -   centroid (or center of area) of the plane surface,  
CP -  center of pressure (point of application of the resultant force on the plane surface),  

 -  magnitude of the resultant force on the plane surface (acting normally),  
 -  vertical depth of the centroid C,  
 -  vertical depth of the center of pressure CP,  
 -  inclined distance from O to C,  
 -  inclined distance from O to CP.  

A
O

RF

ch

Rh

cy
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Find magnitude of resultant force:  

The resultant force is found by integrating the force due to hydrostatic pressure on an element dA at a 
depth h over the whole surface:  

  

where by the first moment of area 
  
Hence,  

      

The resultant force on one side of any plane submerged surface in a homogeneous fluid is therefore 
equal to the pressure at the centroid of the surface (the mean pressure) times the area of the surface. 
This relationship is true irrespective of the shape of the plane or the angle q at which it is slanted.  

Find location of center of pressure:  

Taking moment about O,  
 

But  
 

 
where  IO = second moment of area (or moment of inertia) of the surface about O,  

 = second moment of area (or moment of inertia) about an axis through the centroid and 
parallel to the axis through O (depends on the geometry of the surface, see below for the 
values for some common figures).  

Therefore, on substituting,  

 

 

Now, the depth of the center of pressure depends on the shape of the surface and the angle of 
inclination, and is always below the depth of the centroid of the plane surface for .  

For a flat rectangular surface that pierces through the free surface, and hence a triangular 

pressure distribution:  
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Properties for some Common sectional areas  

GG is an axis passing through the centroid and parallel to the base of the figure.  
   

Shape Dimensions Area Second moment 
of area about GG 

 

Rectangle 

 

    

Triangle 

 

    

Circle 

 

    

Semi-Circle 
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Some Additional Notes on Second Moment of Area 
 
For a plane surface of arbitrary shape, we may define the 
nth (n = 0, 1, 2, 3, ...) moment of area about an axis GG by 
the integral 

, 

Then,  
• the zeroth moment of area = total area of the surface, 
• the first moment of area = 0, if GG passes through the 

centroid of the surface, 
• the second moment of area gives the variance of the 

distribution of area about the axis. 
 
 

For example, for a rectangular surface, the second 
moment of area about the axis that passes through 
the centroid is 

 

 
 
 

 
 
Parallel Axis Theorem 
 
If OO is an axis that is parallel to the axis GG, 
which passes through the centroid of the surface, 
then the second moment of area about OO is equal 
to that about GG plus the square of the distance 
between the two axes times the total area: 
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G. Hydrostatic Force on Submerged Curved Surfaces  
 
1) Liquid above surface  

Suppose we are required to find the force acting on the upper side of the curved surface AC.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Horizontal component of force on surface:  

By considering the equilibrium of the liquid mass contained in ABC, we get  

FH = F = resultant force of liquid acting on the projection of the curved surface on a vertical plane 
(BC) and acting through the center of pressure of F.  

Vertical component of force on surface  

By considering the equilibrium of the liquid mass contained in ADEC, we get  

FV = W = weight of liquid vertically above the surface (ADEC) and through the center of gravity of 
the liquid mass.  

A 

C 

B 

D E 

FH 

FV 

  F 



 15 

Resultant force   
 

, 
 

pointing downward, and making an angle  with the horizontal.  
  

2) Liquid below surface  

Suppose we are required to find the force acting on the underside of the curved surface AB. The 
space above the surface ADCB may be empty or contain other fluid.  

 

Imagine that the space (ADCB) vertically above the curved surface is occupied with the same fluid 
as that below it (disregard what actually is filling that space). Then the surface AB could be removed 
without disrupting the equilibrium of the fluid. That means, the force acting on the underside of the 
surface would be balanced by that acting on the upper side under this imaginary condition. Therefore 
we may use the same arguments as in the preceding case:  

Horizontal component of force on surface:  

FH = F = resultant force of liquid acting on the projected vertical area (AB) and acting through the 
center of pressure of F.  

Vertical component of force on surface  

FV = W = weight of imaginary liquid (i.e., same liquid as on the other side of the surface) vertically 
above the surface (ADCB) and through the center of gravity of the liquid mass.  

Resultant force   

, 

which points upward, and makes an angle  with the horizontal.  

2 2
R H VF F F= +

( )1tan /V HF Fa -=

2 2
R H VF F F= +

( )1tan /V HF Fa -=

FH 

FV 

  F    
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H. Buoyancy 

Because the pressure in a fluid in equilibrium increases with depth, the fluid exerts a resultant 
upward force on any body which is wholly or partly immersed in it.  This force is known as the 
upthrust or buoyant force, which can be determined according to Archimedes’ principle or the law 
of flotation. 

The buoyant force acting on a body immersed in a fluid is equal to the weight of the fluid displaced 
by the body, and it acts upward through the centroid of the displaced volume. 

  
Note that FB is positive.  Previous chapters do not involve the determination of FB, because they 
concern an immersed object where fluid only acts on one side of the object.  For instance, we 
computed the hydrostatic force acting on the wall of a container filled with liquid, i.e. there is no 
liquid outside of the container.  In contrast, we need to consider FB if the object is immersed in the 
liquid, i.e. there is liquid on both sides of the object, for example a fish swimming under water. 

 

• One way to show this law of flotation is to consider the free-body diagram of an immersed object.  
The weight of the object, W, is acting downward whereas the buoyancy force, FB, is acting 
upward.  The sum of W and FB is the net force acting on the object, which defines the apparent 
weight of the object in a fluid:  

 

 

• Wapp of an immersed object is always smaller than its actual weight W, because of a positive FB.  
Equivalently, Wapp is the net force on an object 

 

• A body will sink in a liquid when its weight is larger than the weight of the fluid displaced by the 
body, i.e the net force of the body, or equivalently Wapp, is greater than zero.  This amounts to the 
condition that the density of the body is larger than the density of the fluid, or the body is denser 
than the fluid.  Apparent weight is 

 

 

• A neutrally buoyant body is one with the same density as the fluid; it can be suspended anywhere 
in the fluid.  Apparent weight Wapp (net force) is zero. 

• A body will float in a liquid when its density is less than the 
density of the fluid, or the body is lighter than the fluid.  
The body can only displace as much as its own weight of 
fluid when freely floating.  Apparent weight is zero (The 
“smallest” Wapp is zero, which is for a floating object, and is 
the same for a neutrally buoyant object). 

   
 



Computing hydrostatic force and its location

1 Computing magnitude of hydrostatic force, FR

To summarize what we have learnt so far,

• For a fluid at rest, the force acting on it must be perpendicular to its surface because there

are no shearing stresses present.

• The pressure will vary linearly with depth, P = ρgh.

Next, we are going to apply what we have learnt about hydrostatics to compute the force acting

on a submerged object in a hydrostatic system.

FIG. 1

• Refer to Fig. 1(a): Computing the resultant force at bottom is simple, FR = PA, where A is

the area of the bottom.

• Refer to Fig. 1(b): Computing the resultant force on the sides are more complicated for

the following reasons: (i) Pressure varies with depth. (ii) In general, the sides may be non-

rectangular shape. (iii) The sides may be inclined.

1



To consider a general case, let’s consider an inclined object of arbitrary shape submerged in a

liquid, as shown in Fig. 2 below.

FIG. 2

Note that,

• The liquid surface is horizontal, as shown in the figure.

• The inclined object makes an angel θ with the free surface. The plane where the object lies

define the y coordinate. The x coordinate is in the direction perpendicular to the object

surface.

2



To compute the resultant force acting on the object FR...

• First, we consider a small differential area dA of the object.

• At any given depth h, the force acting on dA is

dF = ρghdA.

.

Note that, this force is acting perpendicular to the surface in the x direction.

• Then, we can determine the magnitude of the resultant force by summing the forces on all

these differential area over the entire surface of the object:

FR =
∫
A ρghdA =

∫
A ρgy sin θdA.

.

Note that we have used h = y sin θ.

• For constant ρ, g and θ, we can further write FR = ρg sin θ
∫
A ydA.

• Next, we invoke the relation
∫
A ydA = ycA. The integral

∫
A ydA is the first moment of the

area with respect to x; see notes for further discussion (optional). The derivation of this

relation is not our focus. Rather our focus here is the quantity yc, which is the distance of

the centroid of the object measured from the origin O.

• To sum up, we can write:

FR = ρgAyc sin θ,

.

or equivalent

FR = ρghcA

.

which uses the relation hc = yc sin θ.

• Now we know the magnitude of the resultant force FR acting on the a submerged object.
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2 Computing hydrostatic force location, yR

• There is still one question left to be answered: where on the object does this resultant force

act on? Initially, we may think that the resultant force should act through the centroid of

the object. However, this may not be true in general.

• Let’s use the parameter yR to denote the distance from the origin O to the location where

the resultant force acts on the object. Our goal here is to find yR.

• To this end, let’s take moment about O. Remember that moment is defined as force times

distance. This enables us to write

FRyR =
∫
A ydF .

.

Physically, the LHS of the equation means that the resultant force acting on the object FR

(which is known by now) is acting on yR (which we are going to determine). The RHS means

that we are taking moments of the distributed force on the differential area of the object.

• Using our previous results, we can manipulate the equation as:

(ρgyc sin θA)yR =
∫
A y(ρgy sin θdA),

.

(ycA)yR =
∫
A y

2dA.

.

• The integral
∫
A y

2dA is known as the second moment of area and let’s call it I0. The integral

form of I0 is not useful to our goal of finding yR. However, I0 can be written as I0 = Ic +Ay2c ,

where we have invoked the parallel axis theorem. We will not get into the details of the

theorem because it is purely a geometric exercise; see notes for further discussion (optional).

• To sum up, we have

yR = Ic/(ycA) + yc.

For a submerged object, usually yc and A are known. Ic is a function of the shape of the

object and is also known; see page 11 of the notes. Thus, this enables you to determine yR.
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FLUIDS IN MOTION (BOOK CHAPTER 3, 5, 8) 

Fluid motions manifest themselves in many different ways. Some can be described very easily, while 
others require a thorough understanding of physical laws. In engineering applications, it is important 
to describe the fluid motions as simply as can be justified. It is the engineer's responsibility to know 
which simplifying assumptions (e.g., one-dimensional, steady-state, inviscid, incompressible, etc) 
can be made.  

A. Classification of Fluid Flows  

1) Uniform flow; steady flow  

If we look at a fluid flowing under normal circumstances - a river for example - the conditions (e.g. 
velocity, pressure) at one point will vary from those at another point, then we have non-uniform flow. 
If the conditions at one point vary as time passes, then we have unsteady flow.  

Under some circumstances the flow will not be as changeable as this. The following terms describe 
the states which are used to classify fluid flow:  

Uniform flow: If the flow velocity is the same magnitude and direction at every point in the flow it is 
said to be uniform. That is, the flow conditions DO NOT change with position. 

Non-uniform: If at a given instant, the velocity is not the same at every point the flow is non-uniform.  

Steady: A steady flow is one in which the conditions (velocity, pressure and cross-section) may 
differ from point to point but DO NOT change with time.  

Unsteady: If at any point in the fluid, the conditions change with time, the flow is described as 
unsteady. 

Combining the above we can classify any flow in to one of four types:  

• Steady uniform flow. Conditions do not change with position in the stream or with time. An 
example is the flow of water in a pipe of constant diameter at constant velocity. 
 

• Steady non-uniform flow. Conditions change from point to point in the stream but do not 
change with time. An example is flow in a tapering pipe with constant velocity at the inlet - 
velocity will change as you move along the length of the pipe toward the exit. 

 

• Unsteady uniform flow. At a given instant in time the conditions at every point are the same, 
but will change with time. An example is a pipe of constant diameter connected to a pump 
pumping at a constant rate which is then switched off. 

 

• Unsteady non-uniform flow. Every condition of the flow may change from point to point and 
with time at every point. An example is surface waves in an open channel. 

 
 
You may imagine that one class is more complex than another – steady uniform flow is by far the 
most simple of the four. 
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2) One-, two-, and three-dimensional flows  

A fluid flow is in general a three-dimensional, spatial and time dependent phenomenon:- 

  

where  is the position vector,  are the unit vectors in the Cartesian coordinates, 

and  are the velocity components in these directions.  As defined above, the flow will be 

uniform if the velocity components are independent of spatial position , and will be steady if 
the velocity components are independent of time t.  

Accordingly, a fluid flow is called three-dimensional if all 
three velocity components are equally important.  
Intrinsically, a three-dimensional flow problem will have the 
most complex characters and is the most difficult to solve.  

Fortunately, in many engineering applications, the flow can 
be considered as two-dimensional.  In such a situation, one of 
the velocity components (say, w) is either identically zero or 
much smaller than the other two components, and the flow conditions vary essentially only in two 
directions (say, x and y).  Hence, the velocity is reduced to  where  are functions of 

 (and possibly t).  This reduction in the velocity component and spatial dimension will greatly 
simplify the analysis.  Examples of two-dimensional flow typically involve flow past a long structure 
(with the axis of structure being perpendicular to the flow): 
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3) Viscous and inviscid flows  

An inviscid flow is one in which viscous effects do not significantly influence the flow and are thus 
neglected. In a viscous flow the effects of viscosity are important and cannot be ignored.  

To model an inviscid flow analytically, we can simply let the viscosity be zero; this will obviously 
make all viscous effects zero. It is more difficult to create an inviscid flow experimentally, because 
all fluids of interest (such as water and air) have viscosity.  The question then becomes: are there 
flows of interest in which the viscous effects are negligibly small? The answer is "yes, if the shear 
stresses in the flow are small and act over such small areas that they do not significantly affect the 
flow field."  The statement is very general, of course, and it will take considerable analysis to justify 
the inviscid flow assumption.  

Based on experience, it has been found that the primary class of flows, which can be modeled as 
inviscid flows, is external flows, that is, flows of an unbounded fluid which exist exterior to a body. 
Inviscid flows are of primary importance in flows around streamlined bodies, such as flow around an 
airfoil (see the sketch below) or a hydrofoil. Any viscous effects that may exist are confined to a thin 
layer, called a boundary layer, which is attached to the boundary, such as that shown in the figure; 
the velocity in a boundary layer is always zero at a fixed wall, a result of viscosity.  For many flow 
situations, boundary layers are so thin that they can simply be ignored when studying the gross 
features of a flow around a streamlined body.  For example, the inviscid flow solution provides an 
excellent prediction to the flow around the airfoil, except possibly near the trailing edge where flow 
separation may occur.  However the boundary layers must be accounted for when the skin friction 
force on the body is to be calculated. 

 

 

 

 

 

     

Viscous flows include the broad class of internal flows, such as flows in pipes, hydraulic machines, 
and conduits and in open channels. In such flows viscous effects cause substantial "losses" and 
account for the huge amounts of energy that must be used to transport oil and gas in pipelines. The 
no-slip condition resulting in zero velocity at the wall, and the resulting shear stresses, lead directly 
to these losses.  

 

Viscous internal flow: (a) in a pipe; (b) between two parallel plates. 
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4) Laminar and turbulent flows  

 

In the experiment shown above, a dye is injected into the middle of pipe flow of water.  The dye 
streaks will vary, as shown in (b), depending on the flow rate in the pipe.  The top situation is called 
laminar flow, and the lower is turbulent flow, occurring when the flow is sufficiently slow and fast, 
respectively.  In laminar flow the motion of the fluid particles is very orderly with all particles 
moving in straight lines parallel to the pipe wall.  There is essentially no mixing of neighboring fluid 
particles.  In sharp contrast, mixing is very significant in turbulent flow, in which fluid particles 
move haphazardly in all directions.  It is therefore impossible to trace motion of individual particles 
in turbulent flow.  The flow may be characterized by an unsteady fluctuating (i.e., random and 3-D) 
velocity components superimposed on a temporal steady mean (i.e., along the pipe) velocity. 

 

Time dependence of fluid velocity at a point. 

Whether the flow is laminar or not depends on the Reynolds number, 

 

 

and it has been demonstrated experimentally that 
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B. Flow Visualization 

There are four different types of flow lines that may help to describe a flow field. 

1) Streamline 
A streamline is a line that is everywhere tangent to the velocity vector at a given instant of time. A 
streamline is hence an instantaneous pattern, i.e. a streamline changes with time in general. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Equation for a streamline 

  

Example: Consider that velocity components are given by u = sin(3yt) and v = k, where t is time and 
k is a constant.  We could substitute these components into the above equation and integrate both 
sides of the equation.  The resulting equation that relates x and y is the equation for the streamline. 

 
 
 
 
 
 
 
 
 
 
 
 

 Streamlines are very useful to help visualize the flow pattern.  Another example of the streamlines 
around a cross-section of an airfoil has been shown earlier on page 3.   

When fluid is flowing past a solid boundary, e.g., the surface of an aerofoil or the wall of a pipe, 
fluid obviously does not flow into or out of the surface. So very close to a boundary wall the flow 
direction must be parallel to the boundary.  In fact, the boundary wall itself is also a streamline by 
definition. 

It is also important to recognize that the position of streamlines can change with time - this is the 
case in unsteady flow. In steady flow, the streamlines do not change.  
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Some further remarks about streamlines  

• Because the fluid is moving in the same direction as the streamlines, fluid cannot cross a 
streamline. 

• Streamlines cannot cross each other.  If they were to cross, this would indicate two different 
velocities at the same point.  This is not physically possible. 

• The above point implies that any particles of fluid starting on one streamline will stay on that 
same streamline throughout the fluid. 

2) Streakline 

A streakline is an instantaneous line whose points are occupied by particles which have earlier 
passed through a prescribed point in space.  A streakline is hence an integrated pattern.  A streakline 
can be formed by injecting dye continuously into the fluid at a fixed point in space. As time marches 
on, the streakline gets longer and longer, and represents an integrated history of the dye streak. 

  

 
  

 
 

 
 

 
 

3) Pathline 

A pathline is the actual path traversed by a given (marked) fluid particle.  A pathline is hence also an 
integrated pattern.  A pathline represents an integrated history of where a fluid particle has been. 

 

 
 

For steady flow, streamlines, streaklines, and pathlines are all identical. However, for unsteady flow, 
these three flow patterns can be quite different. In a steady flow, all particles passing a given point 
will continue to trace out the same path since nothing changes with time; hence the pathlines and 
streaklines coincide. In addition, the velocity vector of a particle at a given point will be tangent to 
the line that the particle is moving along; thus the line is also a streamline. 

 

 



 7 

C. Elementary Equations of Motion 

In analyzing fluid motion, we might take one of two approaches: (1) seeking to describe the detailed 
flow pattern at every point (x,y,z) in the field, or (2) working with a finite region, making a balance 
of flow in versus flow out, and determining gross flow effects such as the force, or torque on a body, 
or the total energy exchange. The second approach is the "control-volume" method and is the 
subject of this section. The first approach is the "differential" approach and will be covered in the 
later part of this course.  

We shall derive the three basic control-volume relations in fluid mechanics:  

• the principle of conservation of mass, from which the continuity equation is developed; 
• the principle of conservation of energy, from which the energy equation is derived; 
• the principle of conservation of linear momentum, from which equations evaluating dynamic 

forces exerted by flowing fluids may be established. 

1) Control volume 

• A control volume is a finite region, chosen carefully by the 
analyst for a particular problem, with open boundaries 
through which mass, momentum, and energy are allowed 
to cross. The analyst makes a budget, or balance, between 
the incoming and outgoing fluid and the resultant changes 
within the control volume. Therefore one can calculate the 
gross properties (net force, total power output, total heat 
transfer, etc.) with this method. 

• With this method, however, we do not care about the details inside the control volume (In 
other words we can treat the control volume as a "black box.") 

• For the sake of the present analysis, let us consider a control volume that can be a tank, 
reservoir or a compartment inside a system, and consists of some definite one-dimensional 
inlets and outlets, like the one shown below: 

Let us denote for each of the inlets and outlets:- 

V = velocity of fluid in a stream 
A = sectional area of a stream 
p = pressure of the fluid in a stream 
r = density of the fluid 
 
Then, the volume flow rate, or discharge (volume of flow crossing a section per unit time) is 
given by 

  

Similarly, the mass flow rate (mass of flow crossing a section per unit time) is given by 
 

 
 
 

Then, the momentum flux, defined as the momentum of flow crossing a section per unit time, 
is given by            

• For simplicity, we shall from here on consider steady and incompressible flows only. 
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2) Continuity equation 

By steadiness, the total mass of fluid contained in the control volume must be invariant with time.  
Therefore there must be an exact balance between the total rate of flow into the control volume and 
that out of the control volume: 

Total Mass Outflow = Total Mass Inflow 
which translates into the following mathematical relation 

 

 

where M is the number of inlets, and N is the number of outlets. If the density of fluid is constant, 
conservation of mass also implies conservation of volume. Hence for a control volume with only 
one-dimensional inlets and outlets,  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

For example, in a pipe of varying cross sectional area, the continuity equation requires that, if the 
density is constant, between any two sections 1 and 2 along the pipe  

 
 
 

 
Another example involving two inlets and one outlet is shown below. 
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3) Bernoulli and energy equations 

Let us first derive the Bernoulli equation, which is one of the most well-known equations of motion 
in fluid mechanics, and yet is often misused.  It is thus important to understand its limitations, and 
the assumptions made in the derivation.  

The assumptions can be summarized as follows:  
• Inviscid flow (ideal fluid, frictionless) 
• Steady flow (unsteady Bernoulli equation will not be discussed in this course) 
• Along a streamline 
• Constant density (incompressible flow) 
• No shaft work or heat transfer 

   

The Bernoulli equation is based on the application of Newton's law of motion to a fluid element on a 
streamline.  

 

Let us consider the motion of a fluid element of length ds and cross-sectional area dA moving at a 
local speed V, and x is a horizontal axis and z is pointing vertically upward. The forces acting on the 
element are the pressure forces  and , and the weight w as shown. Summing forces 
in the direction of motion, the s-direction, there results  

 
 

where as is the acceleration of the element in the s-direction. Since the flow is steady, only 
convective acceleration exists  

 

Also, it is easy to see that . On substituting and dividing the equation by rgdA, we can 
obtain Euler's equation:  

 

Note that Euler's equation is valid also for compressible flow.  

pdA ( )p dp dA+

( )   cos    spdA p dp dA g ds dA ds dA ar q r- + - =

s
dVa V
ds

=

cos /dz dsq =

0dp Vdz dV
g gr
+ + =
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Now if we further assume that the flow is incompressible so that the density is constant, we may 
integrate Euler's equation to get  

 

This is the Bernoulli equation, consisting of three energy heads  

 Pressure head, which is the work done to move fluid against pressure 

z Elevation head, representing the potential energy; z can be measured above any 
reference datum  

 Velocity head, representing the kinetic energy 

• A head corresponds to energy per unit weight of flow and has dimensions of length.  
• Piezometric head = pressure head + elevation head, which is the level registered by a 

piezometer connected to that point in a pipeline. 

• Total head = piezometric head + velocity head. 

It follows that for ideal steady flow the total energy head is constant along a streamline, but the 
constant may differ in different streamlines. (For the particular case of irrotational flow, the 
Bernoulli constant is universal throughout the entire flow field.)  

Applying the Bernoulli equation to any two points on the same streamline, we have  

 
 

 
There is similarity in form between the Bernoulli equation and the energy equation that can be 
derived directly from the first law of thermodynamics.  Without getting into the derivation, the 
energy equation for a control volume with only one inlet (section 1) and one outlet (section 2) can be 
written as 

 
 
 

 
where  is the shaft work, or the rate of work transmitted by rotation shafts (such as that of a pump 
or turbine; positive if output to a turbine, negative if input by a pump) that are cut by the control 
surface, and , called the head loss, is the sum of energy losses required to overcome viscous 
forces in the fluid (dissipated in the form of thermal energy) and the heat transfer rate.  In the 
absence of these two terms, the energy equation is identical to the Bernoulli equation.  We must 
remember however that the Bernoulli equation is a momentum equation applicable to a streamline 
and the energy equation above is applied between two sections of a flow. The energy equation is 
more general than the Bernoulli equation, because it allows for (1) friction, (2) heat transfer, (3) shaft 
work, and (4) viscous work (another frictional effect).  

p
gr

2

2
V
g
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2
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2
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4) Momentum equation 

On applying Newton's second law of motion to the control volume shown on page 8, we get 

 

 

 

Note that this equation  
• follows from the principle of conservation of linear momentum: resultant force on the control 

volume is balanced by the net change of momentum flux (i.e., ) on getting out through 
the control surface.  

• is a vector equation. Components of the forces and the velocities need to be considered.  
• can be used to calculate the magnitude and direction of the impact force exerted on the 

control volume by its solid boundary.  

Further consider a steady-flow situation in which there is only one entrance (section 1) and one exit 
(section 2) across which uniform profiles can be assumed (see the figure on page 9). By continuity  

 

 

The momentum equation now reduces to  

or in terms of their components in  coordinates  

 

 

 

where  is the x-component of the velocity at section 1, and so on. 

On applying the momentum equation, one needs to pay attention to the following two aspects. 

Forces  
 represents all forces acting on the control volume, including  

• Surface forces resulting from the surrounding acting on the control volume:  
o Impact force, which is usually the unknown to be found, on the control surface in 

contact with a solid boundary  
o Pressure force on the control surface which cuts a flow inlet or exit. Remember that 

the pressure force is always a compressive force.  
• Body force that results from gravity.  

Sign of the vector variables 
When plugging into the equations, one should be careful about the sign of the force and velocity 
components. These quantities should carry a positive (negative) sign when they are in the same 
(opposite) sense as that of the corresponding coordinate. 

mV
!
"

( ), ,x y z

( )1xV

Få
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D. Applications of the Bernoulli and Momentum Equations 

1) Pitot tube 

If a stream of uniform velocity flows into a blunt body, the streamlines take a pattern similar to this:  

 
 
 

 
 

Streamlines around blunt bodies 

Note how some move to the left and some to the right. But one, in the center, goes to the tip of the 
blunt body and stops. It stops because at this point the velocity is zero - the fluid does not move at 
this one point. This point is known as the stagnation point.   

From the Bernoulli equation we can calculate the pressure at this point. Apply Bernoulli equation 
along the central streamline from a point upstream where the velocity is  and the pressure  to 
the stagnation point of the blunt body where the velocity is zero, . Also .  

 
 
 
 

This increase in pressure, which brings the fluid to rest, is called the dynamic pressure.  

Dynamic pressure =  
or converting this to head (using ) 

Dynamic head =  
 

The total pressure is known as the stagnation pressure (or total pressure)  

Stagnation pressure =  
or in terms of head, 
Stagnation head =  

  

The blunt body stopping the fluid does not have to be a solid. It could be a static column of fluid. 
Two piezometers, one as normal and one as a Pitot tube within the pipe can be used in an 
arrangement shown below to measure velocity of flow.  

1V 1p

2 0V = 1 2z z=

/h p gr=
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A Piezometer and a Pitot tube. 

Using the above theory, we have the equation for ,  

 
 

which is an expression for velocity obtained from two pressure measurements and the application of 
the Bernoulli equation.   This equation is for ideal flow only.  To account for real fluid effects, the 
equation can be modified into , where  is the coefficient of velocity to be 
determined empirically. 

 

 

 

 

 

 
A Pitot tube used to measure velocity of flow in a channel. 

 
 

 
 

A Pitot tube underneath the wing of an aircraft. 

2p

( )2vV C g H h= - vC

V 
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2) Pitot static tube  

The necessity of one piezometer and one Pitot tube and 
thus two readings make this arrangement a little 
awkward. Connecting the two tubes to a manometer 
would simplify things but there are still two tubes. The 
Pitot static tube combines the tubes, and they can then 
be easily connected to a differential manometer. A 
Pitot static tube is shown here. The holes on the side of 
the tube connect to one side of a manometer and 
register the static head, (h1), while the central hole is 
connected to the other side of the manometer to 
register, as before, the stagnation head (h2).  The 
difference of the two heads, being the dynamic head, is 
now measured directly by the differential manometer. 

 

 

 

 
 
 
 
 
 
 

Close-up of a Pitot static tube. 
 
 
 
 
 
 
Consider the pressures on the level of the centre line of the Pitot static tube and using the theory of 
the manometer,  

  
 
 
 
 
 

We also know that . Hence   

 
 

The Pitot/Pitot-static tubes give velocities at points in the flow. It does not give the overall discharge 
of the stream, which is often what is wanted. It also has the drawback that it is liable to block easily, 
particularly if there is significant debris in the flow.  

2
2 1 / 2p p Vr= +

1
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2
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3) Orifice and vena contracta 

We are to consider the flow from a tank through a hole on a side wall. The general arrangement and 
a close-up of the hole and streamlines are shown in the figure below.  

 

Tank and streamlines of flow out of a sharp-edged orifice 

The hole is sharp-edged so as to minimize frictional losses by minimizing the contact between the 
hole and the liquid issuing from the hole.  

Looking at the streamlines you can see how they contract after the orifice to a minimum cross 
section where they all become parallel, at this point, the velocity and pressure are uniform across the 
jet. This convergence is called the vena contracta (from the Latin 'contracted vein'). It is necessary 
to know the amount of contraction to allow us to calculate the flow.  

 

 

 

 

 

 

 

We can predict the velocity at the orifice using the Bernoulli equation. Apply it along the streamline 
joining point 1 on the surface to point 3 at the centre of the vena contracta.  

At the surface velocity is negligible (V1 = 0) and the pressure atmospheric (p1 = 0). Outside the 
orifice the jet is open to the air so again the pressure is atmospheric (p3 = 0). If we take the datum 
line through the orifice then z1 = h and z3 =0, leaving  

 
 
 

 

 

h 

(1) 

(2) (3) 

vena contracta 

(3) 
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4) Venturi, nozzle and orifice meters 

The Venturi-, nozzle- and orifice-meters are three similar types of devices for measuring discharge in 
a pipe. The Venturi meter consists of a rapidly converging section, which increases the velocity of 
flow and hence reduces the pressure. It then returns to the original dimensions of the pipe by a gently 
diverging 'diffuser' section. By measuring the pressure differences the discharge can be calculated. 
This is a particularly accurate method of flow measurement as energy losses are very small.  

The nozzle meter or flow nozzle is essentially a Venturi meter with the convergent part replaced by a 
nozzle installed inside the pipe and the divergent part omitted. The orifice meter is a still simpler and 
cheaper arrangement by which a sharp-edged orifice is fitted concentrically in the pipe.  

 

Schematic arrangements for three types of devices measuring flow-rate in a pipe 

 

A Venturi meter in laboratory. 
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The working formulae are similar for the three devices.  Let us for illustration show the one for the 
Venturi meter. Applying the Bernoulli equation along the streamline from point 1 to point 2 in the 
narrow throat of the Venturi meter, we have  

 

By using the continuity equation we can eliminate the velocity V2,  . 

Substituting this into and rearranging the Bernoulli equation we get  

 
 
 
 
 
 

To get the theoretical discharge this is multiplied by the area. To get the actual discharge taking in to 
account the losses due to friction, we include a coefficient of discharge  

 
 
 
 
 
 

Suppose a differential manometer is connected between (1) and (2).  Then the terms inside the square 
brackets can be related to the manometer reading  as given by 

 
 
 

Thus the discharge can be expressed in terms of the manometer reading:  

 
 
 

 

 

It should be noted that in deriving a formula for a discharge measuring device (Venturi, nozzle, 
orifice meters, etc), assumptions are taken to simplify the situations so that the Bernoulli equation 
can be applied. For example, there is no energy loss and the flow is steady. In this way, exact 
analytical solutions can be obtained, but as the assumptions are not exactly true, these solutions fail 
to account for the real situations.  Empirical coefficients such as Cv, Cd are therefore introduced to 
allow for these errors. The final formula will be an analytical solution modified by an empirical 
coefficient. On the other hand, the value of the empirical coefficient can also reflect the justification 
of using the ideal approach. Cd for orifice meter is far below unity (0.6-0.65), while Cd for nozzles 
and venturi meters are close to one (approximately 0.98). It shows that energy loss is rather 
substantial in an orifice meter, as is expected from its abrupt configuration.  

2 2
1 1 2 2

1 22 2
p V p Vz z
g g g gr r
+ + = + +

1 1 2 2 2 1 1 2 or /Q AV AV V AV A= = =

h
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5) Force on a pipe nozzle  

Let us from here on consider several applications of the momentum 
equations.  A simple application is to find the force on the nozzle at 
the outlet of a pipe. Because the fluid is contracted at the nozzle 
forces are induced in the nozzle. Anything holding the nozzle (e.g. 
a fireman) must be strong enough to withstand these forces.  

Steps in analysis:  
1. Draw a control volume 
2. Decide on a coordinate-axis system 
3. Calculate the rate of change of momentum across the control volume 
4. Calculate the pressure force  
5. Calculate the body force  
6. Calculate the resultant reaction force  
 

1 & 2. Control volume and co-ordinate axis are shown in the figure below.  

 

  Notice how this is a one-dimensional system which greatly simplifies matters.  

3. Calculate the change of momentum flux (RHS of the momentum equation)  

 

By continuity, , so  

 
 
 

4. Calculate the pressure force (red arrows) 

 

We use the Bernoulli equation to calculate the pressure  

 

Since the nozzle is horizontal, z1 = z2, and the pressure outside is atmospheric, p2 = 0, and with 
continuity the Bernoulli equation gives  

pF

BF

RF

1 1 2 2Q AV AV= =

1 1 2 2 pressure force at 1  pressure force at 2pF p A p A= - = -

2 2
1 1 2 2

1 22 2
p V p Vz z
g g g gr r
+ + = + +

A1 

V1 

p1 

 

A2,   V2 

FR 
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5. Calculate the body force  

The only body force is the weight due to gravity in the y-direction - but we need not consider this as 
the only forces we are considering are in the x-direction.  

6. Calculate the reaction force that the nozzle acts on the fluid (green arrow) 

Since the indicated direction of the reaction force is opposite to x-axis, a negative sign is included 

 
 
 
 
 
 
 

So the fireman must be able to resist the force of . 

6) Force due to a two-dimensional jet hitting an inclined plane  

Consider a two-dimensional (i.e., very wide in the spanwise direction) jet hitting a flat plate at an 
angle q.  For simplicity gravity and friction are neglected from this analysis. 

We want to find the reaction force normal to the plate so we choose the axis system such that it is 
normal to the plane.  

 

 

   

 

 

 

 

 

 

A two-dimensional jet hitting an inclined plate. 

RF

A3,   V3 

A1,   V1 

A2,   V2 

Fn 



 20 

We do not know the velocities of flow in each direction. To find these we can apply the Bernoulli 
equation  

 
 

The height differences are negligible i.e., , and the pressures are all atmospheric = 0. So  

 
By continuity  

 
 
 

Using this we can calculate the forces in the same way as before.  

1. Calculate the total force in the x-direction.  

Remember that the co-ordinate system is normal to the plate.  

 

but  as the jets are parallel to the plate with no component in the x-direction, and 
, so  

 

2. Calculate the pressure force  

All zero as the pressure is everywhere atmospheric.  

3.Calculate the body force  

As the control volume is small, hence the weight of fluid is small, we can ignore the body forces.  

4. Calculate the resultant reaction force  

 
 

which is the force exerted on the fluid by the plate.  

We can further find out how much discharge goes along in each direction on the plate. Along the 
plate, in the y-direction, the total force must be zero, , since friction is ignored.  

Also in the y-direction:  so  

 
 

Setting this to zero, we get 

1 2 3z z z= =

2 3 0x xV V= =

1 cosxV V q=

0yF =å

1 2 3sin ,  ,  ,y y yV V V V V Vq= = = -
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and as found earlier we have A1 = A2 + A3, so on solving 

 
 

by which we readily obtain that   

So we know how the discharge is divided between the two jets leaving the plate.  

7) Flow past a pipe bend 

 

 

Consider the pipe bend shown above. We may first draw a free body diagram for the control volume 
with the forces:  
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Paying due regard to the positive x and y directions, we may write the summation of forces in these 
two directions:  

  

Relating these components to the net change of momentum flux through the inlet and exit surfaces  

x-Direction  
 

   
y-Direction  

 
 

From these two equations and using the continuity equation and the Bernoulli equation, we may 
calculate the two force components.  The magnitude and direction of the resultant force from the 
bend on the fluid are  

  

As a reaction, the impact force on the pipe bend is equal in magnitude, but opposite in direction to 
the one on the fluid. 

1 1 2 2

2 2

cos

sin
x x

y y

F p A p A F

F F p A W

q

q

= - -

= - -
å
å

( )1 1 2 2 2 1cos cosxp A p A F Q V Vq r q- - = -

( )2 2 2sin sin 0yF p A W Q Vq r q- - = -

( )

2 2

1tan /

x y

y x

F F F

F Ff -

= +
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(V) FLUID KINEMATICS & DIFFERENTIAL ANALYSIS OF FLUID 
FLOW (BOOK CHAPTER 4 & 6) 
 
A. Description of Fluid Motion 

• Lagrangian description: fluid particles are “tagged” or identified; rate of change of 
flow properties as observed by following a particle of fixed identity; variables are 
functions of the initial position of particles and time. 

• Eulerian description: fluid properties and variables are field variables, which are 
functions of position in space (with respect to a fixed frame of reference) and time. 
The Eulerian description, which is comparable to the data recorded by a measuring 
device fixed in position, is more convenient to use in fluid mechanics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Rectangular (Cartesian) coordinates: 
       

A scalar is a quantity with magnitude only.  A vector is a quantity with both 
magnitude and direction, hence with a single free index.  A second-order tensor is a 
quantity with magnitude and associated with two directions, hence with two free 
indices.  According to the Einstein summation convention, when an index appears 
twice in a single term it implies summation of that term over all the values of the 
index.  A repeated index is called a dummy index. 

 

• Primitive variables:  

 Deduced variable         
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( )

( )

1 2 3

1 2 3

1 2 3
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velocity  ( , ) -  vector (1st order tensor)
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x
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B. Kinematics 

• Total (a.k.a. material, substantial) derivative = local rate of change + convective (or 
advective) rate of change = the rate of change as observed following a particle of 
fixed identity.  It is an operator that can be applied to any scalar or vector quantity. 

 
 

 

 
- The local rate of change, also called the unsteady term, vanishes identically for 

a steady flow.  Therefore a flow is steady if and only if .  
- The quantity  is a scalar convective operator that determines the time 

rate of change of any property (e.g., velocity, density, concentration, 
temperature) of a particle by reason of the fact that the particle moves from a 
place where the property has one value to another place where it has a 
different value. 

 
 
 
 
 
 
 
 
 
 
 
 
 

( ) ( ) ( )( )

( )
!

( ) ( ) ( )

( )

            

local rate convective rate of changeof change

e.g.,   local acceleration = 

         convective acceleration = 

d
dt t

u v w
t x y z

t

u v w
x y z

¶
= + ×

¶
¶ ¶ ¶ ¶

= + + +
¶ ¶ ¶ ¶

¶
¶

¶ ¶ ¶
× + +

¶ ¶ ¶

Ñ

Ñ
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V

V

V V VV V =

/ 0t¶ ¶ º
( )×ÑV

In the Eulerian description, one 
defines field variables, such as the 
pressure field and the velocity field, 
at any location and instant in time. 
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•  

  

 
As illustrated by:- 
 

 
 

 
 
 
 

The various modes of deformation can be expressed in terms of the velocity gradients. 
 

• Divergence of velocity is the volumetric strain/dilatation rate (rate of change of 
volume per unit volume)  

 

 

where ,  and  are the components of the volumetric strain rate due 
to elongation of a fluid element in the x-, y-, and z-directions, respectively. 
Consider a small element of dimensions : 

  

 

Translation (trivial)
+           (rigid body motion)

Rotation
General motion =               +

       Dilatation                     (change in volume)
              +
Angular deformation          (chan

ü
ï
ý
ï
þ

ge in shape)

ì
ï
ï
ï
ï
í
ï
ï
ï
ï
î

u x¶ ¶ v y¶ ¶ w z¶ ¶
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Because of the velocity differential  over a distance , the element is lengthened 
in the x-direction by  over a small period of time .  The corresponding 
change in volume is therefore 

  
  

and the volume strain rate (change in volume per volume per time) is 

 

 
Similarly, for the lengthening of the element in the y- and z-directions 

 

The total volume strain rate is hence given by the divergence of the velocity. 

 
 
 
 
 
 
 

 
 

 
• Any shear deformation can be decomposed into rigid body rotation and angular 

deformation.  Consider a small element undergoing shear deformation 
 

 
 
Specifically, we impose shear force to the fluid element such that 
(i) the face OA moves with a velocity  over a distance , and 
(ii) the face OB moves with a velocity  over a distance  

 

ud xd
u td d× td

,          as ,  ,  0y z
V Vv w y z t

V t y V t z
d d d d d
d d

¶ ¶
= = ®

× ¶ × ¶

vd xd
ud δ y
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Because of the velocity differential  over a distance , the face OA rotates 
counterclockwise by an angle  over a small period of time .  
Therefore the angular velocity of OA is  

 
Similarly, the face OB rotates clockwise at an angular velocity given by 

 
 

 
 
 
 
 
 
 
 
 
 

The deformation can be decomposed into a rigid body rotation at an angular velocity 

, where counterclockwise rotation is taken to be positive, 

 
 
 
 
 
 
 
 
 
 
 
 

and an angular deformation, where the corner angle decreases at a rate given by 

, where a positive rate means a decreasing angle, 

 
 

 
 
 
 
 
 
 
 
 

vd xd
/v t xda d d d= × td
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• Rate of angular deformation of a 2-D fluid element moving in the x-y plane  (angular 
deformation is considered to be positive if it is to decrease the original right angle) is 
hence defined to be 

 
 

(Optional) For a 3-D element in general, the rate of change of the corner angle that is 
initially a right angle between the i-j axes 

 , 

which is symmetric, i.e., , and is called the deformation rate tensor. 
 

• Rotation of a fluid element (about an axis which is perpendicular to the plane of the 
fluid motion) is the average of the angular velocities of the two mutually 
perpendicular sides of the element, where counterclockwise rotation is considered to 
be positive: 

 
 
 
 
 
 

Rotation (or angular velocity) vector:  

Note that for a 2-D flow in the x-y plane,  and  vanish identically; hence the 
rotation vector is always perpendicular to the x-y plane. 

 
• To generalize, we may introduce: 
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1 1 1 1    deformation rate tensor , or  
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(ii) Vorticity vector  twice the rate of rotation,  2 ,  where
      vorticity    (curl of velocity)
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The difference between a rotational and irrotational flow: fluid elements in a rotational 
region of the flow rotate about their own axis, but those in an irrotational region of the 
flow do not. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The direction of a vector cross product is 
determined by the right-hand rule.  
Therefore, the curl of velocity is always 
perpendicular to the velocity itself. 

The vorticity vector is equal to twice the 
angular velocity vector of a rotating fluid 
particle. 

 2=
! !z w
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C. The Reynolds Transport Theorem 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Define: 
• Material Volume (MV): the volume that contains the collection of matter of the same 

identity; it may move and deform following the motion of the matter 
• Material Surface: the enclosing surface of the material volume; by definition no 

matter can cross it. 
• Control Volume (CV): a fixed volume in space; under motion matter which is initially 

in the CV may leave the CV at later times and new matter may get into the CV. 
• Control Surface (CS): the enclosing surface of the CV. 
• Flux: amount of matter (e.g., mass, momentum, energy) crossing a unit area of a 

surface per unit time. 
 
We state without proof the Reynolds transport theorem, which provides a basis for 
developing differential equations for the various conservation laws:   

 

 
where ρ is density of fluid 
b = B/m is an intensive version of an extensive property B (e.g. mass when b = 1, 
momentum when b = velocity V, kinetic energy when b = V2/2) 
m is mass 
n is the unit vector outward normal to CS 

rate of change of the local rate of change of the
property within property within the fixed
the material volume control volume that happens

to coincide with the material
volum

MV CV

d bdV bdV
dt t

r r¶
=

¶òòò òòò
!""#""$

net out-flux of the
property across the
entire control surface

e at that instant

CS
b dAr+ ×òò

!""#""$!""#""$

V n

Two approaches of analyzing a problem. 
(a)  Lagrangian (System) approach: 
follow a collection of matter of the same 
identity as it moves and deforms; no 
mass crosses the boundary.  (b) Eulerian 
(Control volume) approach: consider the 
changes in a certain fixed volume; mass 
crosses the boundary. 

The Reynolds transport theorem 
(RTT) provides a link between 
the system approach and the 
control volume approach. 
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For b = 1, the property is mass and the left-hand side of the RTT becomes zero.  Physically, 
this implies that there cannot be a rate of change of mass if we are tracking the same identity 
of mass --- mass cannot be created or destroyed!   This left with the right-hand side of the 
RTT, which concerns only CV. 
 
 
 
 
To illustrate the equation physically, let us set such a CV in a channel. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A moving system (hatched region) 
and a fixed control volume (shaded 
region) in a diverging portion of a 
flow field at times t and . t t+!
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The CV has four CS, i.e. the upper, left, lower, and right face.  Suppose there is a fluid flow 
in the system such that mass can flow in or out of the CV.  In this example, mass can only 
flow in or out of the CV through the left and the right face.  Let us denote the cross-sectional 
area of the left and the right face by A1 and A2, respectively; and denote the fluid velocity 
across the left and the right face by V1 and V2, respectively.  With these notations, Eq. (1) can 
be written as 
 
 
 
 
 
 
Note that ρAV is the mass flow (unit: kgs-1).  Densities of fluid on the left ρ1 and right face ρ2 
are not the same in general.  Physically, Eq. (2) implies that the rate of decrease of the mass 
in the CV is equal to the net rate of flow of mass across the CS. 
 
In the specific case where the flow is steady (time-independent), the left-hand side of Eq. (2) 
becomes zero.  Eq. (2) becomes, 
 
 
This recovers what we studied in previous chapter, where the mass flowrates into and out of 
the CV equal. 
 
 
D. Conservation of Mass 

If the property is mass, then b = 1, and 
 

 

 

 
Equating L.H.S. and R.H.S., and removing the volume integral since CV is arbitrary, we 
get the differential form of Continuity Equation 

   
 
 
 
 

 

( )L.H.S.      mass in 0   

                 (by definition of , which always contains the same fluid)
MV

d ddV MV
dt dt

MV

r = =òòò

( )
by Gauss theorem is stationary

R.H.S.      

               = 

CV CS

CV CV

CV

dV dA
t

dV dV
t

r r

r r

¶
+ ×

¶
¶

+ ×
¶

òòò òò
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INCOMPRESSIBLE FLOW  is defined as one in which the density of a fluid particle 

is invariant with time , which implies 

  

 
 
 

Note that a flow with constant density is always incompressible, but an incompressible 
flow does not necessarily have a constant density (e.g., flow in a stratified sea). 

 
 

E. Applied Forces 
• Body force due to gravity on a small fluid element =  
• Surface stress , where  is the unit outward normal vector to the surface, and  
 

  

 
are the stress components on an infinitesimal cubic fluid element. 
 

 is a second order tensor, where  
the first index i denotes the face (on which the stress acts) being normal to ,  
and the second index j denotes the stress component being in the  direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 

In the textbook, the normal stress is denoted by  in order to distinguish it from the 
shear stress . 
It can be shown that  is symmetric, ie, . Therefore there are only 6 
independent stress components. 

0d
dt
r

Û =

0    
                   (ie, divergence of velocity is zero for incompressible flow)
In Cartesian coordinates, the continuity equation for inc

×V =                                                       Ñ

ompressible flow reads

dVrg
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F. Conservation of Linear Momentum 
Apply Newton’s second law of motion to a material volume of fluid: 
 

  

 
 
The L.H.S. can be converted, using the transport theorem and the continuity equation, 

into . 

The first term on the R.H.S. is  on using Gauss theorem. 

Plugging these terms back, and removing the volume integral since the volume is 
arbitrary, we get the differential form of momentum equation 
 

  
 

 
The left hand term is a total derivative, which can be expanded into the Eulerian form: 
 

 
 

 
By now, there are more unknowns than equations. To close the problem, we need to 
introduce CONSTITUTIVE (stress vs strain-rate) relations to relate the stress and the 
kinematics. 
If the fluid is Newtonian, a linear relationship between stress and strain rate is followed 

 

 
The divergence of the stress tensor is 

  

   =      +   

rate of change surface body
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Finally, on substituting the above relationship, we obtain the Navier-Stokes equations 

  
Meanings of the five terms:- 
 
(I) – local acceleration or unsteady term;  
(II) – convective acceleration (inertia), nonlinear term of the equation; 
(III) – pressure gradient;  
(IV) – gravity;  
(V) – viscous diffusion of momentum owing to molecular viscosity of the fluid.   
 
Now, we have 4 equations (1 continuity + 3 components of momentum) for the four 
variables  as functions of space and time . Note that it is the 
pressure gradient, rather than the pressure itself that drives the flow.  The unsteady term 
vanishes when the flow is independent of time.  The inertia terms vanish for strictly one-
dimensional flow.  The viscous terms are dissipative terms, without which the system 
becomes conservative. 
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The Equations of Motion for an Incompressible Newtonian Fluid 
 

In Rectangular Coordinates (x, y, z) 
 

 

 

 
 

In Cylindrical Coordinates (r, q, z) 
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( , , ) are the components of the acceleration due to gravity in the , , and  directions.
If, say,  and  are horizontal axes and  is positive upward, then 0,  and .
Also, the gravity 

x y z

x y z

g g g x y z
x y z g g g g= = = -

( )
can be combined implicitly with the pressure term by introducing 

* .x y zp p p g x g y g zr rº - × - + +g x =
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G. Scaling and Approximation 
• Because of the inertia terms (convective acceleration), the Navier-Stokes (NS) 

equations are non-linear equations.  
• Except for simple flow geometry, analytical solutions do not exist in general. 
• Fortunately, for many practical applications, not all terms in the equations are equally 

important, and therefore some subdominant terms can be dropped in favor of a first 
approximation of the problem. The approximate equations can then be solved 
(analytically or numerically) with much greater ease than the full-blown ones. 

• It is important to judge, for a particular problem, the relative significance of the 
individual terms in the NS equations, which can be reflected from the magnitude of 
the corresponding non-dimensional parameters. 

 
For illustration, consider incompressible unsteady flow past a body: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Characteristic scales:  
 Length (L); Time scale of unsteadiness (T); Velocity (U); Pressure (P) 
 
Introduce dimensionless variables (distinguished by *): 

  
the normalized Navier-Stokes equation can be expressed as 
  

  
 

The scales have been chosen to be representative of the variables so that all the 
dimensionless terms are order unity.  Now, the importance of each term (relative to 
the inertia) is carried by its bracketed coefficient. 
 

  

/ ,     * / ,     / ,     * / ,      /U t t T L p p P g= = = = =V* V x* x g* g

2

2

temporal accelerationStrouhal number (St)  
convective accelertion

pressure forceEuler number (E)  
inertia

ineritaReynolds number (Re)  
viscous force
ineritaFroude number (Fr)  

gravi

L
UT
P
U
UL

U
gL

r

n

= =

= =

= =

= =
ty force
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Possible Cases of Simplification:- 

 
Large Re 
 
 
 
 
 
 
 
 
Small St 
 
 
 
 
 
 
 
 
Small Re 
 
 
 
 
 
 
 

 
 

Spatial Dimension 
Also, it is often the case that the flow varies only in one or two spatial dimensions, 
and therefore the problem can be reduced to a one- or two-dimensional problem, for 
which only one or two velocity components need to be solved.  Some common cases 
of one-dimensional flow: 

• fully developed pipe or channel flow: axial velocity as a function of radial 
distance from center of pipe , or longitudinal velocity as a function of 
distance from the bottom of channel ; 

• axi-symmetrical flow: velocity is symmetrical about an axis (e.g., point 
source/sink, vortex). 

 
 
 
 

( )u u r=
( )u u y=



 

 1 

SIMPLE (EXACTLY OR NEARLY ONE-DIMENSIONAL) VISCOUS 
FLOW (BOOK CHAPTER 6, 8) 
 
A. Mathematical Formulation for a Fluid Dynamics Problem 
 
Assumptions: 

• constant fluid properties (density , viscosity ) 
• Newtonian fluid (linear, isotropic and purely viscous material) 

 
Basic Variables: 

  
 
Basic Governing Equations: 
 

  

 
 
Other derived variables: 
 

  

 

  
 
Boundary Conditions: 

• No-slip boundary condition: the velocity of a fluid in contact with a solid 
impermeable wall must equal that of the wall 

 
 
If in particular the wall is stationary, the fluid adjacent to the wall must have zero 
velocity. 

r µ
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The development of velocity profiles due to the no-slip condition as a fluid flows past 
a blunt nose and a flat plate. 
 

• Interface boundary condition between two fluids:  when fluid A and fluid B meets at 
an interface, the velocity and stress must match between the two fluids at the interface 

 
 

If, say, the interface is flat (along x-direction) and the fluids are moving parallel to the 
interface, the continuity of stress implies the continuity of pressure and shear stress at 
the interface 

 
 

 

 
 

• Free-surface boundary condition: a degenerate form of the above interface boundary 
condition occurs at the free-surface of a liquid, meaning that fluid A is a liquid (say, 
water, oil) and fluid B is a gas (usually air). By virtue of the fact , the 
shear stress at the air-liquid interface is negligibly small, and it is reasonable to 
approximate the shear stress to be at the interface, which is hence called a free surface, 

 
 
 

 

air liquidµ µ!
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• Other boundary conditions, such as inlet condition, outlet condition, periodic 
condition and symmetry, may also apply to certain types of boundaries, depending on 
the problem. 

 
 
 
 
 
 
 
 
Boundary conditions along a plane of symmetry are defined so as to ensure that the 
flow field on one side of the symmetry plane is a mirror image of that on the other 
side, as shown above for a horizontal symmetry plane.  The velocity gradient and the 
shear stress are zero on the plane of symmetry. 
 

Initial Condition  If the problem is time dependent (i.e., unsteady), an initial condition also 
needs to be specified. 
 
 
************************************************************************* 
Let us consider in the following sections a few applications of the Navier-Stokes equations, 
in which the flow configuration is simple enough for analytical solutions (exact or 
approximate) to be deduced. The assumptions are that the flow is steady ( ), 
laminar, and incompressible and the fluid is Newtonian. 
 
 
B. Plane Poiseuille-Couette Flow 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note that this is a unidirectional flow . Therefore there is no dependence 
on x for all variables: . 
 
The flow is driven by three forcings: (1) motion of the upper plate; (2) pressure gradient 
in the x-direction, ; (3) gravity, if x is not in a horizontal direction. 
 
 
Recall the momentum equations: 
 

  / 0t\ ¶ ¶ =

( ),   0u u y v= =
/ 0x¶ ¶ =

/ a constantp x¶ ¶ =

u(y) 

y 

Lower fixed plate 

Upper plate moving at a constant speed     U 

x 
y = 0 

y = h 
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Note that the inertia terms are identically zero, which is true for all unidirectional flows 
irrespective of the Reynolds number. 
 
Equation (2) simply gives that the pressure 
 
The R.H.S. of equation (1) is constant, so the equation can be integrated twice with 
respect to y, giving 

 
 
 

where  and  are integration constants that can be determined using the boundary 
conditions that 

 
 
 

 
Solving for these constants, we obtain the solution for the velocity profile (see Fig. 6.31 
below): 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Couette flow is caused by the motion of a boundary wall moving in its own plane, while 
Poiseuille flow is caused by axial pressure gradient or gravity in the direction of flow. 

1C 2C
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The shear stress in the flow is 
 

 
 
 
 
 

The discharge (flow-rate) per unit width of channel is given by   
 
 
 

 
 

The volume flow averaged (mean) velocity 
 
 
 
 

It is left as an exercise for you to show the following 
 Given that  is a positive constant and , determine the location of the 

maximum velocity. It is also the point where the shear stress vanishes (why?). 
Hence, find the minimum value of U such that the shear stress will not vanish 
throughout the flow. 

 
 
 
C. Circular Poiseuille Flow 

We now consider laminar flow through a circular tube: 
• The objective to find the relationship between volumetric flow rate and pressure 

change along a pipe of circular section. 
• Examples include blood flow in capillaries, air flow in lung alveoli, where the 

Reynolds number is not high enough for the flow to become turbulent. 
• Navier-Stokes equations in cylindrical coordinates are to be used, where 

, since the flow is axially-symmetric (i.e., no dependence on angular 
position in a cross-section of the flow). 

• We have seen that the gravity can be combined with the pressure gradient in a 
trivial manner, so let us ignore gravity in the following analysis. 

 
 
 
 
 
 
 
 
 
 Again, this is a unidirectional flow:  is driven by a constant and 
steady pressure gradient dp/dz in the axial direction. 

/p x-¶ ¶ 0xg =

/ 0q¶ ¶ =

0,   0r zu u uq= = ¹

r 

 

Circular pipe of radius R 

z 
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The two integration constants  and  can be determined using the boundary 
conditions: 

 
 
 
 
 
 

Plugging back, we get the expression for the velocity profile 

  
which is a parabolic distribution with the maximum at the center: 

 

The flow-rate is 

 

The mean velocity is half the maximum velocity 

  
The shear stress at wall is given by 
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What is the purpose of considering the continuity equation? 
 
Let’s take the flow between two parallel plates as an example.  It will lead us to u = u(y) for 
simplifying the Navier-Stokes equation. 
 
Thus, if you are given that u = u(y) in the question, that implies that you do not need to 
consider/solve the continuity equation. 
 
However, if you are given only v = w = 0, you need to apply this condition in the continuity 
equation, which will give you 𝜕u/𝜕x = 0, implying that u = u(y,z) = u(y).  The last equality is 
due to the fact that the plates are infinite in the z-direction so we should not expect u to 
depend on z.	
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INVISCID AND POTENTIAL FLOW (BOOK CHAPTER 6) 
 
Analysis can be considerably simplified if the flow under consideration can be regarded as 
INVISCID and IRROTATIONAL. 
 
A. Inviscid (Nonviscous) Flow 

• Flow of an ideal fluid with zero viscosity  would be inviscid exactly. 
• In practice, flow is approximately inviscid when the effects of shear stresses on the 

motion are small as compared to other influences. One guiding condition is that the 
Reynolds number Re must be very large: 

  
 

• Many flows involving water or air, whose viscosity is small, can practically be 
considered as inviscid as long as the viscous effects are not dominant (e.g., far from a 
wall). 

• When the viscous force becomes negligible, the Navier-Stokes equations reduce to 
Euler’s equations 

 
 

• For incompressible flow, Euler’s equations of motion can be integrated along a 
streamline to yield the Bernoulli equation 

 

 

• It is remarkable that the Bernoulli equation provides an algebraic (rather than vector 
differential) relationship between pressure, velocity and position in the earth’s 
gravitational field. 

 
B. Irrotational (Potential) Flow 

• Recall that vorticity (curl of velocity) is twice the rotation (angular velocity) of a fluid 
element. 

• A fluid element will acquire vorticity when acted upon by a couple to cause it to 
rotate. One source of rotation is unbalanced shear stresses acting on its periphery. 
When shear stresses are absent, it is possible that the flow is irrotational. 

• A flow field is irrotational if, at every point, the vorticity vanishes or 
 
 

• It can be shown that the flow of an inviscid fluid which is irrotational at a particular 
instant of time remains irrotational for all subsequent times. That means, the motion 
of an inviscid fluid which is started from rest is always irrotational (provided the flow 
lies outside a boundary layer). 

• This result is known as the Persistence of Irrotational Motion of an inviscid fluid. It 
is because the setting up of a rotation would require forces tangential to the boundary; 
and such forces, which arise through the viscous properties of the fluid, are non-
existent in the inviscid fluid model. 

( )0µ =
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• The constant in the Bernoulli equation becomes universal (i.e., not specific to a 
streamline) when the flow is irrotational (Section 6.4.4). Therefore, for 
incompressible irrotational flow, the Bernoulli equation can be applied between any 
two points in the flow field:  

 
 

 

• The procedures of finding a solution for an irrotational flow field are typically: 
o Firstly, solve for the velocity field from an the governing potential flow 

equation derived from the condition of zero vorticity, which is the subject 
matter of the following sections. 

o Secondly, find the pressure from the Bernoulli equation. 
 

One should appreciate that solving irrotational flow equations is usually much simpler 
than solving the full Navier-Stokes equations.  It is, however, important to note that 
the character of the governing equation has changed.  The Navier-Stokes equations 
for viscous flow are second-order differential equations, while the Euler equation for 
inviscid flow involves only first-order derivatives of the velocity.  This has important 
implications in terms of the number of boundary conditions necessary and possible to 
satisfy for a given problem.  For inviscid flow, it is not possible to satisfy the no-
slip condition at a solid boundary.  In other words, on solving the Euler equation, 
we need not (or cannot) specify any condition on the tangential velocity of fluid in 
contact with a solid wall or another fluid.  Slip on fluid–solid or fluid–fluid interfaces 
is freely allowed for ideal fluids. 
 

• No matter how small its viscosity is, a real fluid 
cannot freely “slide” past a solid boundary.  
Hence, irrotationality will fail to apply to a 
boundary layer, which is a thin layer that 
develops next to a solid wall owing to no-slip of 
the flow at the wall. The flow in a boundary layer 
is always viscous and highly rotational (a rapid 
change in velocity from zero at wall to the free 
stream value over a short distance); real fluid 
behavior must be accounted for in a boundary 
layer. 
 

• In summary, the most general governing equation for a viscous or inviscid flow is the 
Navier-Stokes equation. 

o By setting the viscous term equals to zero, the scope is restricted to an inviscid 
flow [An inviscid flow is still rotational in general!].  The Navier-Stokes 
equation reduces to the Euler equation.  In other words, the Euler equation is a 
special case of the Navier-Stokes equation.   

o By setting the viscous term AND vorticity equal to zero, the scope is restricted 
to an irrotational flow.  The Navier-Stokes equation reduces to the potential 
flow equation, which we will discuss next.  In other words, the potential flow 
equation is a special case of the Euler equation, which is a special case of 
Navier-Stokes equation. 
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C. The Velocity Potential 
• For any scalar field , curl(grad ) = 0 is an identity.  See a proof below. 

 
 
 
 
 
 
 
 
 
 
 
 

 
• Alternatively speaking, a velocity field V is irrotational or curl V = 0 if and only if 

there exists a scalar field  such that V = grad . 
 
• The scalar function is called velocity potential 

 

 

 
Irrotational flow is therefore also called potential flow. 
 
 

• The velocity potential satisfies Laplace’s equation on substituting the above relation 
into the continuity equation: 
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D. Equipotential Lines and Streamlines 
• A two-dimensional potential flow field can be graphically represented using a flow 

net composed of equipotential lines and streamlines. 
 
• Equipotential lines are (contour) lines of constant velocity potential, while streamlines 

are lines in the flow field that are everywhere tangent to the velocity. It can be shown 
that these two sets of lines are orthogonal (i.e., they intersect each other at right 
angles). 
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y is constant 

V 

Figure 6.15 shows a flow net for a 90o bend. A 
flow net is useful in the visualization of a flow 
pattern. To further understand what information a 
flow net can provide, we need to know something 
about stream function. 
 
 
 
 
 
 
 
 
 

 
Stream Function 
• For 2-D incompressible flow, another scalar function, viz stream function can be 

introduced to identically satisfy the continuity equation.  
 

 

 
Note that the stream function is introduced based on kinematics consideration only. It 
is definable for any two-dimensional incompressible flow fields, irrespective of the 
flow being inviscid or not.  
 

• Physically, y is constant along a streamline since 

 
 

That means, a line of constant (along which ) will have its slope in the same 
direction of flow: . This is nothing but the defining property for a 
streamline.  
 
Note that a solid boundary is always a 
streamline. At a particular instant of time, 
there is no fluid crossing any streamline, 
and distinct streamlines cannot cross. 

 
 

( ) ( )A stream function ,  or ,  is defined such that
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• Given any two points in space whose stream function values are known, then the 
volume flow rate across any line joining these two points is equal to the difference in 
values of their stream functions. 

 
 
 
 
 
 

• If the 2-D flow is irrotational, the stream function also satisfies Laplace’s equation, 
since 

 

 

 

 

 

 

 

 

Therefore, for two-dimensional irrotational flow, both the velocity potential f and the 
stream function y satisfy Laplace’s equation. They are called harmonic functions, 
and they are harmonic conjugates of each other.  These functions are related, but 
their origins are different: 
 
– The stream function is defined by continuity; the Laplace equation for  results 

from irrotationality. 
 
– The velocity potential is defined by irrotationality; the Laplace equation for  

results from continuity. 
 
By now, referring back to Figure 6.15, you should understand that in a flow net the 
velocity is roughly given by 

 

 
where  is the spacing between two adjacent equipotential lines, and  is the 
spacing between two adjacent streamlines. Therefore, the velocity is higher in a 
region where the mesh is finer, and lower where the mesh is coarser. 
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E. Some Simple Plane Potential Flows 
1) Uniform Flow with constant velocity U 

 

 
 
For case (a) where the flow is purely in the x-direction: 
 

 
 
 
 
 
 
 

 
Can you write down the corresponding  and  for case (b) where the flow is at an 
angle  with the x-axis? 
 

2) Source and Sink 
A 2-D source is a line (from a mathematical perspective) 
that runs perpendicular to the plane of flow and injects 
fluid equally in all directions. The figure shows the flow 
field of a source at the origin, from which fluid particles 
emerge and follow radial pathlines. The strength of a 
source, denoted by m, is the volume rate of flow 
emanating from unit length of the line.  

 
                                            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

f y
a
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By conservation of mass,  for any radial distance r from the source located at the 

origin.  Hence, .  On integrating, 

 
 
 
 
 
 
 
 
 
 
 
 
 

o when , the flow is radially outward, the origin is a SOURCE 
o when , the flow is radially inward, the origin is a SINK 
o the origin is a singularity where  
o conservation of mass is satisfied everywhere except the origin 

 
 
 

3) Vortex 
In contrast to a source, a vortex has the pathlines 
being circles centered on the origin, and fluid 
particles move along these circles. The vortex can 
be used to model the flow round the plughole in a 
bathtub. An irrotational vortex is called a free 
vortex. The strength of a vortex is measured by the 
circulation  around a closed curve C 

that encloses the center of the vortex.  Hence, 

.  

On integrating, 
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o the flow is not defined at the origin 
o the vorticity curl V = 0, except at r = 0, where V is not defined 
o free vortex (a) is irrotational flow, tangential velocity decreases radially   
o forced vortex (b) is rotational flow, tangential velocity increases radially   

 
 
 
 
 

 
 
 
 
 
 
 
 

4) Doublet 
Consider a combination of a source and a sink of equal strength m and separated at a 
distance 2a (left figure): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the source and sink are moved indefinitely closer together  in such a way 
that the product 2am (distance apart  strength) is kept finite and constant, then we 
obtain a doublet. The streamline pattern for a doublet is shown in the right figure 
above. The line joining the source to the sink is called the axis of the doublet, and is 
taken to be positive in the direction from sink to source. The strength of the doublet 
is  

1u rq
-µ

u rq µ

( )0a®
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The basic potential flows that have been discussed so far are more mathematical 
constructions than physically realistic entities (although a source/sink may represent 
the flow field of an injection/withdrawing well, and so on). However a combination of 
these basic potential flows may provide a representation of some flow fields of 
practical interest. This is the subject matter for the next section.  
 

 
 

F. Superposition of Basic Potential Flows 
Let us first be reminded that for inviscid flow, a solid boundary is a streamline, and 
conversely, a streamline can be considered as a solid boundary. The kinematic 
conditions along the two are the same: normal velocity = 0. In fact, we may replace any 
streamline in a flow field by an impermeable surface without disturbing the flow.  
 
Since the governing equation (Laplace’s equation) for potential flow is linear, 
superposition of solutions gives the solution to the combined effect.  In the following 
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examples, you will see how ideal flows can be described by a combination of basic 
solutions.  A key quantity to be determined is the dividing streamline. In the followings, 
we use two examples to illustrate the general procedures.  

 
1) Source + Uniform Flow = Flow Past a Half Body 
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The flow pattern around the half-body is described by streamlines . The velocity 
components and the pressure can then be determined as described in earlier sections. 
 
 

 
 

2) Source + Sink + Uniform Flow = Flow Past a Rankine Oval 
 
 

 
 
The source and the sink are of the same strength: any mass of fluid injected by the 
source is eventually drawn into the sink. The dividing streamline is now a closed 
curve. This finite body, called Rankine Oval, has two stagnation points, one at the 
front end and the other at the rear end of its boundary.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

stagnationy y>
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3) Doublet + Uniform Flow = Flow Past a Circular Cylinder 
As the source and the sink combine to become a doublet, the Rankine Oval becomes a 
circular cylinder. As the flow past a circular cylinder is of fundamental interest, let us 
examine the flow in some detail. 
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The pressure distribution on the cylinder surface can be found from the Bernoulli 
equation 
 
 
 
 
where  is the far upstream pressure. It is 
remarkable that the pressure distribution is 
symmetrical about the horizontal and the 
vertical diameters. Therefore there is no net 
force arising from the pressure distribution 
around the cylinder in both streamwise and 
lateral directions. In other words, both drag 
and lift forces are exactly zero, as predicted 
from the potential flow theory. 
 
This zero drag prediction is contrary to what 
has been observed in reality. There is always a 
significant drag developed on a cylinder when it is placed in a stream of moving fluid. 
This discrepancy is called d’Alembert’s Paradox, which was not explained until the 
concepts of boundary layer and flow separation were developed. A comparison 
between the inviscid and the real pressure distributions is shown above. 

0p
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4) Free Vortex + Doublet + Uniform Flow = Flow Past a Rotating Circular Cylinder 
 
The effect of adding a vortex is to upset 
the symmetry of flow about the 
horizontal diameter. Therefore, the 
pressure in the upper half of the cylinder 
is not balanced by the pressure in the 
lower half.  This results in a net lift 
force acting laterally on the cylinder. 
 
 
 
 
 
 
 

5) Sink + Free Vortex = Spiral Flow 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6) Two separated sources of equal strength = source flow with a neighboring wall 
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FLOW PAST A BODY AND BOUNDARY LAYER THEORY (BOOK 
CHAPTER 9) 

 
A. Introduction 

In 1904, Prandtl developed the concept of the boundary layer, which provides an 
important link between ideal-fluid flow (inviscid irrotational flow) and real-fluid flow 
(viscous rotational flow). It was accepted that for fluids with relatively small viscosity (or 
more exactly, flow with a high Reynolds number), the effect of internal friction in the 
fluid is appreciable only in a narrow region surrounding the fluid boundaries. Therefore 
the flow sufficiently far away from the solid boundaries may be considered as ideal flow 
(in which effects of viscosity are neglected). However, flow near the boundaries suffers 
retardation by the boundary shear forces and at the boundaries the velocity is zero (no-
slip condition). A steep velocity gradient is therefore resulted in a thin layer adjacent to 
the boundaries, which is known as the boundary layer. It is of great significance when 
behavior of real fluid is considered. For example, it explains the d’Alembert’s paradox – 
the drag force experienced by a cylinder in stream that cannot be predicted with a 
potential theory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Flow of a uniform stream parallel to 
a flat plate.  The larger the Reynolds 
number, the thinner the boundary 
layer along the plate at a given x-
location. 
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Flow past a circular cylinder; the boundary layer separates from the surface of the body in 
the wake for large Reynolds number. 
 
 

B. Description of the Boundary Layer) 
(1) Development of the Boundary Layer 
 
 

 

nominal limit 
of boundary 
layer 
u = 0.99 U 
 y 
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• On-coming flow is irrotational and has a uniform velocity U. 
 

• The boundary layer starts out as a laminar boundary layer, in which fluid particles 
move in smooth layers and the velocity distribution is approximately parabolic. As the 
flow moves on, the continual action of shear stress tends to slow down additional 
fluid particles, causing the boundary layer thickness to increase with distance 
downstream from the leading edge. See below for a definition of the boundary layer 
thickness. 
 

• The flow within the boundary layer is subject to wall shear, and dominated by viscous 
forces. The velocity gradient (hence the rotation of fluid particles) is the largest at the 
wall, and decreases with distance away from the wall, and tends to zero on matching 
with the main stream flow. Roughly speaking, the flow is said to be rotational within 
the boundary layer, but is irrotational outside the boundary layer. 
 

• As the thickness of laminar boundary layer increases, it becomes unstable and some 
eddying commences. These changes take place over a short length known as the 
transition zone. 

 
• It finally transforms into a turbulent boundary layer, in which particles move in 

haphazard paths. Due to the turbulent mixing, the velocity distribution is much more 
uniform than that in the laminar boundary layer. The increase of thickness along the 
plate continues indefinitely but with a diminishing rate. If the plate is smooth (i.e., 
negligible roughness size), laminar flow persists in a very thin film called the viscous 
sub-layer in immediate contact with the plate and it is in this sub-layer that the greater 
part of the velocity change occurs. 

 
 
 
 
 
 
 
 
 
 

U 



 4 

(2) Thicknesses of the Boundary Layer 
i) Boundary Layer Thickness d 
[Figure (a)] The velocity within the boundary layer increases to the velocity of the main 
stream asymptotically. It is conventional to define the boundary layer thickness d as the 
distance from the boundary at which the velocity is 99% of the main stream velocity. 

 
There are other ‘thicknesses’, precisely defined by mathematical expressions, which are 
measures of the effect of the boundary layer on the flow. 

 
 

ii) Displacement Thickness d* 
It is defined by  

  
 

 
[Figure (b)] d* is the distance by which the boundary surface would have to be shifted 
outward if the fluid were frictionless and carried at the same mass flowrate as the actual 
viscous flow. 
Shown in figure (b) are two velocity profiles for flow past a flat plate – one if there were 
no viscosity (a uniform profile) and the other if there are viscosity and no-slip at the wall 
(the boundary layer profile). Because of the velocity deficit, U - u, within the boundary 
layer, the flowrate across section b-b is less than that across section a-a. If we displace the 
plate at section a-a by an appropriate amount d*, the flowrates across each section will be 
identical, which defines d* as shown above. 
 
Conceptually one may ‘add’ this displacement thickness to the actual wall and treat the 
flow over the ‘thickened’ body as an inviscid flow. Let’s look at book example 9.3. 
 
 
iii) Momentum Thickness q 
It is defined by  

  
 
q is the thickness of a layer of the main stream whose flux of momentum equals the 
deficiency in the boundary layer, equivalent to the loss of momentum flux per unit width 
divided by  due to the presence of the growing boundary layer.  The momentum 
thickness is often used when determining the drag on an object. 
 
Note that when evaluating the above integrals for  and q, the upper integration limit 
can practically be replaced by d. 

2Ur

*d
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C. Laminar Boundary Layer Over a Flat Plate 
• Heuristic Analysis 
 
 
 
 
 
 
 
 
 
 
 
 

Consider steady flow past a flat plate at zero incidence. The effect of viscosity is to 
diffuse momentum normal to the plate. Consider a fluid element that is close enough 
to the wall to be influenced by viscosity. In travelling a distance x, it has been 
influenced by viscosity for a time . The influence of viscosity will have 
spread laterally to a distance 

  
 
 

The above analysis is rather crude, and does not yield a full equation for the growth of 
the boundary layer thickness. It however correctly describes one important 
relationship for the laminar boundary layer:  where  is 
the local Reynolds number in terms of the distance from the leading edge x. This 
relationship is found to be valid at a distance far behind the leading edge:  
 
The heuristic analysis can be further carried on to find relations for the wall stress: 

  
 

The wall shear stress  decreases with increase of x until the boundary layer turns 
turbulent. The local friction coefficient, which is defined as follows, is given by 

  
 

While the numerical factor of 2 is far from the true value, the functional dependence 
of Cf on Rex is correctly predicted. 
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• Exact Solution by Blasius (Section 9.2.2) 
A more rigorous analysis, using the technique of similarity solution, was developed 
by Blasius for the laminar boundary layer over a flat plate. While the details of the 
analysis are beyond the scope of this course, it is important to note the following 
results derived from Blasius’ solution. 
 

  

 
where D is the skin friction drag force on unit width of a plate of length L:  

. 

 
 

D. The Boundary Layer Momentum-Integral Equation 
By virtue of the property that the boundary layer thickness d is much smaller than the 
streamwise length scale (say, L): , one may simplify the Navier-Stokes 
equations to obtain the boundary-layer approximation: 
 

  

 
with the boundary conditions: 

  

 
From the y-momentum equation, it is clear that the pressure in the boundary layer is 
constant laterally across the layer and equal to the near-wall pressure of the inviscid flow 
outside the boundary layer. 
 
On integrating the x-momentum equation with respect to y from y = 0 to y = d, and after 
some algebra including the use of the continuity equation, one may obtain the Karman 
momentum integral equation 
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This momentum integral equation is applicable to laminar, transitional or turbulent boundary layer. 
 
In particular, in the absence of pressure gradient (e.g., flow over a flat plate), the free stream velocity 
U = constant and , and therefore the momentum integral equation reduces to 
 

  
 

by which the skin friction drag and drag coefficient are simply given by 
 

  
 

where  is the momentum thickness at . 
 
 
(1) Laminar Boundary Layer Over a Flat Plate Revisited – approximate solution by 

momentum integral equation 
 

It is remarkable that approximate solutions, which are reasonably close to the exact 
ones, can be obtained for the boundary layer thickness and drag coefficients from the 
momentum integral equation on adopting an assumed velocity profile 

 

 
The steps are as follows:- 
a) Find the relation between  and  
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b) Find the wall shear stress from Newton’s law of viscosity 
 
 
 
 
 

 
c) Substitute  and  into the momentum integral equation 

  
 
 
 

 
Integrating the above equation with respect to x, assuming that d = 0 at x = 0: 

  
 
 

Furthermore,  
 
 
 
 
 

 
It turns out that the values of a and b are rather insensitive to the choice of the 
approximate velocity profile  as long as it is a reasonable one 
satisfying the boundary conditions. 
 
Some assumed velocity profiles are 
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. 

 

q wt

/ ( )u U f h=

( )

2

3

2 parabolic
3 cubic
2 2

sin sine
2

f

h h

hh h

ph

ì
ï -
ï
ï= -í
ï
ï æ ö

ç ÷ï è øî

( )
( )
( )

0 0,   (no-slip at 0)

1 1,    (  at )

' 1 0   (no stress at )

f y

f u U y

f y

d

d

= =

= = =

= =



 9 

 
 

(2) Turbulent Boundary Layer Over a Flat Plate 
The one-seven-power law, suggested by Prandtl, is used for the velocity profile in the 
turbulent boundary layer with zero pressure gradient: 

 

by which the momentum thickness is 

  
The one-seven-power law fails to describe the velocity profile at , where 

. The following empirical formula obtained for pipe flow can be adopted 
here: 

  
Substituting  and  into the momentum integral equation, and integrating with 
respect to x: 

  

It is assumed that the turbulent boundary layer starts from  (This is a 
contradiction to the fact that the boundary layer starts out as a laminar one, but this 
assumption has given good results.) Therefore, the constant = 0. Further simplification 
yields 

 . 

These results are valid for smooth flat plates with . 
 
Note that for the turbulent boundary layer flow the boundary layer thickness increases 
with x as  and the shear stress decreases as . For laminar flow these 
dependencies are  and , respectively. 
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E. Effect of Pressure Gradient 
The pressure in the streamwise direction (i.e., along the body surface) will not be constant 
if the body is not a flat plate. Consequently, the free stream velocity at the edge of the 
boundary layer U is also not a constant but a function of x. Whether the free-stream flow 
is accelerating or decelerating along the body surface will have dramatically different 
effects on the development of the boundary layer. 
 
Let us re-examine flow past a circular cylinder, and find out what causes d’Alembert’s 
paradox. 
 
You may recall that inviscid flow past a circular cylinder has a symmetrical pressure 
distribution around the surface of the cylinder about the vertical axis. This results in a 
zero pressure drag, which is however not true in reality for any fluid with a finite 
viscosity. Such discrepancy is now referred to as d’Alembert’s paradox. 
 
Despite the discrepancy, the potential theory helps to reveal that the pressure and hence 
the free-stream velocity Ufs on the cylinder’s surface are not constant. From A to C, the 
pressure gradient is negative and the flow is accelerating, and from C to F, the opposite is 
true.  
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The real fluid flow past a circular cylinder is like this: 
 

 
 
 
Flow Past A-B-C 
• the streamlines are converging, i.e., flow is accelerating, and the free-stream velocity 

U reaches a maximum at C. 
• the pressure is decreasing along the cylinder surface, i.e., , net pressure 

force is in forward direction, and the pressure gradient is said to be ‘favorable’. 
• the accelerating flow tends to offset the ‘slowing down’ effect of the boundary on the 

fluid. Therefore, the rate of boundary layer thickening decreases and flow remains 
stable. 

 
Flow Past C-D 
• the streamlines are diverging, and the flow is retarding. 
• the pressure is increasing along the cylinder surface, i.e., , net pressure 

force opposes the flow, and the pressure gradient is said to be ‘adverse’ or 
‘unfavorable’. 

• it reduces the energy and forward momentum of the fluid particles in proximity to the 
surface, causing the thickness to increase sharply and fluid near the surface be brought 
to a standstill (  at the surface is zero) at D.  See figure (b). 

 

/ 0p x¶ ¶ <

/ 0p x¶ ¶ >
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Flow Past D-E-F 
• flow close to the cylinder surface starts to reverse at D (separate point), i.e., fluid no 

longer to follow the contour of the surface. The phenomenon is termed separation. 
• large irregular eddies formed in the reverse flow (the wake), in which much energy is 

lost to heat. 
• the pressure in the wake remains approximately the same as at the separation point D, 

and is therefore lower than that predicted by the inviscid theory (see figure c). This 
lowering of pressure behind the cylinder resulting from flow separation leads to a net 
pressure drag on the cylinder. This explains d’Alembert’s paradox.  Note that the 
wider the wake, the larger the pressure drag, and vice versa. 
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                (a)    
 
 
 
 
 
 
 
               (b)  
 
 
 
 
 
 

Influence of a strong pressure gradient on a turbulent flow: (a) flow is relaminarized by a 
negative (favorable) pressure gradient; (b) the boundary layer is thickened by a positive 
(unfavorable) pressure gradient. 

 
Further remarks about flow separation 
• separation can occur only under an adverse pressure gradient and when the fluid is 

viscous. 
• separation occurs with both laminar and turbulent 

boundary layers. Laminar boundary layer is more prone 
to separation than turbulent boundary layer. Thus, as 
shown in figure (c) on page 11, the turbulent boundary 
layer can flow farther around the cylinder before it 
separates than the laminar boundary layer. Therefore the 
wake size will be narrower if the flow is turbulent at the 
separation point than if it is laminar. This explains why 
it is desirable to have dimples on a golf ball, which can 
effectively reduce the drag by inducing a narrower 
turbulent wake behind the ball. 

 
 
 

 
 
Turbulent boundary layers are more resistant 
to flow separation than are laminar boundary 
layers exposed to the same adverse pressure 
gradient.  The laminar boundary layer (upper) 
cannot negotiate the sharp turn of 20o, and 
separates at the corner (flow is from left to 
right).  The turbulent boundary layer (lower) 
on the other hand manages to remain 
attached around the sharp corner. 
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F. Drag 
Any object moving through a fluid (or a stationary object immersed in a viscous flow) 
will experience a drag,   – a net force in the direction of flow due to the pressure and 
shear forces on the surface of the object. 
 
Drag = Pressure Drag + Skin Friction Drag 
 
where 
 
Pressure Drag = resultant force arising from the non-uniform and asymmetrical pressure 

distribution around the surface the body. It is also called form drag as it 
depends on the form or the shape of the body. 

 
Skin Friction Drag = resultant force due to fluid shear stress on the surface of the object. 

  
 

 
 
 
 
 
 

The drag coefficient CD is given by the ratio of the total drag force to the dynamic force 

  

where U = relative velocity of fluid far upstream of the object, 
A =  frontal area – the projected area of the object when viewed from a direction 

parallel to the oncoming flow if it is a blunt (or bluff) object (e.g., a cylinder); 
or the planform area – the projected area of the object when viewed from 
above it if it is a streamlined object (e.g., a flat plate).  
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Typically the drag coefficient depends on  
(i) the shape of the object,  
(ii) orientation of the object with the flow (e.g., a flat plate normal to flow has a 

different CD than a flat plate parallel to flow),  
(iii) the Reynolds number  where D is a characteristic dimension of the 

object,  
(iv) surface roughness if the drag is dominated by skin friction and the boundary 

layer is turbulent. 
  
Flow Past a Flat Plate 
 
When a flat plate is held normal to flow, the flow is 
separated upon past over the plate. A region of 
eddying motion (wake) is formed at the rear of the 
plate, the pressure there being much reduced. 
Therefore the pressure drag is dominant, and the 
plate is a bluff body in this position. The drag shows 
little dependence on the Reynolds number. 
When a flat plate is held parallel to flow, formation of the boundary layer over the plate is 
appreciable and flow separation is 
negligible. Therefore the skin friction 
drag is significant. The plate is a 
streamlined body in this position. 
The drag coefficient increases when 
the boundary layer becomes turbulent. 
 
Flow Past a Circular Cylinder/Sphere 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Re /UD n=
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• Re  1 

– creeping flow 
– no flow separation 
–  decreases with increasing Re (  for a sphere) 
(Note that a decrease in the drag coefficient with Re does not necessarily imply a 
corresponding decrease in drag.  The drag force is proportional to the square of the 
velocity, and the increase in velocity at higher Re will usually more than offset the 
decrease in the drag coefficient.) 

• Re = 10 
– separation starts occurring on the rear of the body forming a pair of vortex bubbles 

there 
– vortex shedding begins at Re  90, leading to an oscillating Karman vortex street 

wake (see next page) 
– region of separation increases with increasing Re 
–  continues to decrease with increasing Re until Re = 103, at which pressure 

drag dominates 
•  

–  remains relatively constant, which is a characteristic behavior of blunt bodies 
– flow in the boundary layer is laminar, but the flow in the separated region is 

highly turbulent, thereby a wide turbulent wake 
•  

– a sudden drop in  somewhere within this range of Re 
– this large reduction in  is due to the flow in the boundary layer becoming 

turbulent, which moves the separation point further on the rear of the body, 
reducing the size of the wake and hence the magnitude of the pressure drag.  This 
is in sharp contrast to streamlined bodies, which experience an increase in the drag 
coefficient (mostly due to skin friction drag) when the boundary layer turns 
turbulent. 

£

DC 24 / ReDC =

@

DC

3 510 Re 10< <
DC

5 610 Re 10< <
DC

DC



 17 

 
 

 
Laminar boundary layer separation with 
a turbulent wake for flow past a circular 
cylinder at Re = 2000. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

                            (a)                                                                                (b) 
 
Flow over (a) a smooth sphere at Re = 15,000, and (b) a sphere at Re = 30,000 with a trip 
wire; the delay of boundary layer separation is clearly seen by comparing these two 
photographs.  The delay of separation in turbulent flow is caused by the rapid fluctuations 
of the fluid in the transverse direction, which enables the turbulent boundary layer to 
travel farther along the surface before separation occurs, resulting in a narrower wake and 
a smaller pressure drag.  Recall also that turbulent flow has a fuller velocity profile as 
compared to the laminar case, and thus it requires a stronger adverse pressure gradient to 
overcome the additional momentum close to the wall. 
 
Karman Vortex Streets  
The Karman vortex street is one of the best-known vortex patterns in fluid mechanics.  
The vortex street is just a special type of unsteady separation over bluff bodies such as a 
cylinder. The vortex street is highly periodic having a frequency which is proportional to 
U/D, where D is the length of the bluff body measured transverse to the flow and U is the 
incoming flow speed. This periodicity is responsible for the "singing" of telephone wires. 
In fact, vortex streets are almost always involved when the wind generates a fairly pure 
tone as it blows over obstacles.  

 
A practical consequence of the regular, 
periodic flow is that the forces on the 
body are also periodic. Because the flow 
is asymmetric fore and aft as well as in 
the direction transverse to the flow, the 
body will experience both an oscillating 
drag and lift.  If the frequency of the 
shedding is close to a structural 
frequency, resonance can occur, usually 
with unpleasant results.  



Flows in Porous Media

1 Introduction

Porous media are solid materials with internal pore structures. The pores can be either empty or

filled with fluids. Porous structures vary significantly among different media (Figure 1). A structure

with a regular array of cylindrical pores can be found in micro- or nanofabricated materials. A

foam structure is composed of a continuous solid phase with interconnected channels or isolated

pores and is often observed as a sponge. A granular structure, exhibited by a pile of sand, consists

of solid particles and the void space between them. A fiber matrix is the primary structure in

polymeric gels. Biological tissues can contain several of these structures simultaneously.

There are three compartments in biological tissues: blood and lymph vessels, cells, and inter-

stitium (Figure 2). The interstitial space can be further divided into the extracellular matrix and

the interstitial fluid. Although the volume fraction of each compartment is tissue-dependent, it

is generally less than 10% for the vascular space, which is smaller than those for the other two

compartments. The extravascular region (cells and the interstitium) can be considered a porous

medium, with pores saturated with interstitial fluid.

2 Porosity, tortuosity, and available volume fraction

Porous media can be characterized by their specific surface and porosity, respectively defined

as

s =
Total interface area

Total volume
(1)

and

ε =
Void volume

Total volume
. (2)

Note that the unit of s is one over length and that ε is dimensionless. The void volume is the total

volume of the void space in a porous medium; the interface is the border between solid and void

spaces. Both s and ε depend on the structure of pores.

1



FIG. 1: Examples of porous structures. Upper left: a regular array of cylindrical pores; upper right:

a foam structure; lower left: a granular structure; and lower right: a fiber matrix. In all examples,

the white regions represent void spaces or the fluid phases of the media, and the black regions

represent the solid phases.

FIG. 2: Compartments in biological tissues. (a) An electron micrograph of smooth muscle tissues,

where Fib indicates fibroblast, N indicates the nucleus of smooth muscle cells, and C indicates

collagen fibrils. Blood vessels are not shown in this figure. (b) A schematic of biological tissues.

The vessels can be either blood or lymph vessels. The cells include all populations in the tissue.

2



Some porous media, such as biological tissues, are deformable under mechanical loads. Material

deformation can change the spatial distribution of the porosity. Thus, the porosity may vary both

spatially and temporally. If a porous material is homogenous, its porosity can be easily calculated.

We demonstrate this in Example 1 below.

Example 1: Determine the specific surface and the porosity of a porous medium with uniformly

distributed cylindrical pores. Assume that the pores are parallel to each other (Figure 3), the

diameter of pores is d, L is the length of the pores, and the number of cylinders per unit cross-

sectional area is nA. N is the total number of cylinders in the material and is equal to the product

of the cross-sectional area A and nA.

Solution: The void volume is the space within the cylinders. To calculate the specific surface

and the porosity, we must first determine the total interface area and the void volume. We have

(3)

(4)

The specific surface and the porosity can be calculated by substituting Equations (3) and (4) into

Equations (1) and (2), respectively. The results are

(5)

and

(6)

FIG. 3: A porous medium with cylindrical pores.
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FIG. 4: Classification of pores based on their connections. The passing pores connect to two

boundaries of the rectangular material. A nonpassing pore connects to only one subdomain of the

outer surface. Passing and nonpassing pores together are called penetrable pores. Isolated pores

have no connections to the outer surface of the porous media.

The porosity is a measure of the average void volume fraction in a specific region of porous

medium. It does not provide any information on how different pores are connected or on how many

pores are available for water and solute transport. Therefore, we divide the pores into the following

three categories (Figure 4):

penetrable pores : passing pores,nonpassing pores

isolated pores.
(7)

Based on this classification of pores, the porosity can be expressed as the sum,

ε = εi + εp + εn, (8)

where the subscripts i, p, and n indicate isolated, passing, and nonpassing pores, respectively. Iso-

lated pores are not accessible to external solvents and solutes; therefore, they can sometimes be

considered as part of the solid phase in transport analysis. In this case, the void volume is defined

as the total volume of penetrable pores.
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The path length between points A and B in a porous medium is measured by the distance

between these points through connected pores. The shortest path length, Lmin, can be characterized

by the geometric tortuosity

T =

(
Lmin

L

)2

, (9)

where L is the straight-line distance between A and B. The tortuosity depends on the locations of

A and B and on the structures of porous media. By definition, T is always greater than or equal

to unity.

Not all penetrable pores are accessible to solutes. Such accessibility will depend upon the

molecular properties of the solutes. For example, a pore will be inaccessible to a solute if the solute

molecule is larger than the pore. The portion of accessible volume that can be occupied by the

solute is called the available volume. For a solute, the ratio of the available volume to the total

volume is defined as the available volume fraction:

KAV =
Available volume

Total volume
. (10)

By definition, KAV is molecule-dependent and always smaller than the porosity ε. There are three

possible scenarios that can cause KAV to be less than ε. First, the centers of the solute molecules

cannot reach the solid surface in the void space. In this case, the difference between the total void

volume and the available volume can be estimated as the product of the area of the solid surface

and the distance ∆ between the solute and the surface (Figure 5). The distance ∆ is equal to the

radius of the solute if the solute can come into contact with the surface. However, many biological

surfaces are electrically charged. Solutes that have the same charge as the solid surface does may

not be able to reach the surface. In such cases, ∆ is larger than the radius of the solute.

The second scenario that can cause KAV to be less than ε is the situation in which some of the

void space is smaller than the solute molecules. The third scenario is the inaccessibility of large

penetrable pores surrounded by pores that are smaller than the solutes.

The ratio of the available volume to the void volume is defined as the partition coefficient Φ

of the solutes. The partition coefficient is a measure of solute partitioning at equilibrium between

external solutions and the void space in porous media. This parameter is different from that with

the same name used in chemistry, in which the partition coefficient characterizes the partitioning
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FIG. 5: Steric exclusion of solutes near the surface of solid phase in porous media. The circle

represents the solute molecule. ∆ is the distance between the solute and the surface.

of solutes between two liquid phases, such as oil and water. By definition, the partition coefficient

in porous media is related to KAV and ε via the formula

Φ =
Available volume/Total volume

Void volume/Total volume
=
KAV

ε
. (11)

Example 2: Determine the partition coefficient and the available volume fraction of a spherical

solute in the same porous medium as that in Example 1. Assume that the diameter of the solute

is b and that electric charge-charge interactions are negligible.

Solution: The void volume in each cylinder is equal to Lπd2/4, and the available volume is

equal to Lπ(d/2− b/2)2. Thus, the partition coefficient can be calculated as

(12)

where λ = b/d is the ratio of radius of the solute to that of the pore. The available volume

fraction is equal to the product of the partition coefficient and the porosity, where the porosity was

determined in Example 1. Thus,

(13)

Note that, if λ� 1, Φ ≈ 1, and KAV ≈ ε.
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3 Fluid flow in porous media

3.1 Darcy’s law

Fluid flow in porous media has been studied for more than a century. The interaction between

solid and liquid phases in porous media was first quantified by Darcy in 1856, nearly at the same

time that Fick developed his theory of molecular diffusion. In a study of water percolating through

sand, Darcy discovered that the flow rate was proportional to the pressure gradient. This empirical

relationship, called Darcy’s law, is found to be valid in many porous media and was theoretically

derived by other investigators later, on the basis of mechanical analyses of fluid flow in porous

media. The derivation shows that Darcy’s law is invalid for non-Newtonian fluids, for Newtonian

liquids at high velocity, and for gases at very low and very high velocities. The derivation also

reveals that Darcy’s law neglects the friction within the fluid and the exchange of momentum

between the fluid and solid phases. Except for the friction within the fluid, which is discussed in

Section 3.2, these exceptional cases of Darcy’s law have rarely been observed in the interstitium of

biological tissues. Therefore, Darcy’s law has been widely used in the analysis of interstitial fluid

flow.

The movement of fluid molecules in porous media follows tortuous pathways in the void space

(Figure 6). To describe the fluid flow in porous media, two approaches can be used. One is to

numerically solve the governing equations for fluid flow in individual pores if the structures of pore

networks are known. The other approach is to assume that a porous medium is a uniform material.

In this so-called continuum approach proposed by Darcy in 1856, there are three length scales. The

first one is the average size δ of the pores. The second is the distance L over which macroscopic

changes of physical quantities (e.g., fluid velocity and pressure) must be considered. In most cases,

L is chosen to be the characteristic linear dimension of the porous medium (e.g., the size of tissues

or the distance between adjacent blood vessels). The continuum approach requires that L be at

least two orders of magnitude larger than δ so that there may exist a third length scale, l, between

δ and L. To define l, we consider a volume Vi of dimension l in the porous medium. The volume

fraction of the void space is then the volumetric porosity ε, and the volume fraction of the solid

phase is equal to 1 − ε. When l is close to δ, the porosity ε is highly sensitive to the value of

7



FIG. 6: A sketch of fluid and solute transport in a porous medium. The medium is shown as a

filled gray area. Medium can have any structure but it is represented by a granular structure in

this figure. The solid phase is shown as the black areas in the insert. Fluid and solutes can move

between solid particles. The characteristic size of pores, δ, is equal to the average distance between

adjacent particles. A small volume with a dimension, l, is shown as the insert. The characteristic

distance of transport, L, is the size of the gray area. The curved arrows in the insert indicate

examples of transport pathways.

l. When l is increased gradually, the fluctuation in ε will decrease. There exists a value l0 of l

beyond which ε is a smooth function of l, although it still fluctuates with a very small amplitude

due to the random distribution of pore size in the volume Vi. The continuum approach requires

that δ � l0 � L. In biological tissues, δ < 0.1µm, l0 ∼ 1µm, and L ∼ 100µm to 10cm. Thus,

transport in biological tissues can be studied with the continuum approach.

The volume with dimension l0 is called the representative elementary volume (REV). In porous

media, the REV can be taken to be a point, called a material point, since l0 � L (Figure 6). In that

case, the details of pore structures are neglected, and each spatial point simultaneously contains

two phases: a void phase with a volume fraction of ε, and a solid phase with a volume fraction of

1− ε. For the present discussion, we consider only porous media with pores filled with fluid. Thus,

we do not specifically distinguish the void versus fluid phases. At each material point, any physical

quantity can be defined as the volume average of the same quantity defined in a pure medium.

8



Fluid transport in porous media must satisfy the law of mass conservation. For a pure, in-

compressible fluid, the mass balance equation in the liquid phase states simply that the divergence

of the fluid velocity is equal to zero. The same equation is also valid in a porous medium, if

there is no fluid production (know as a source) or fluid consumption (known as a sink) in the

medium. However, sources and sinks are often present in biological tissues. For example, fluid

is exchanged between interstitial space and the blood or lymph vessels. Thus, the mass balance

equation, ∇ · v = 0, needs to be modified by adding a source term and a sink term:

∇ · v = φB − φL. (14)

Here, v is the fluid velocity averaged in the REV. In Equation (14), φB and φL are rates of volumetric

flow in sources and sinks, respectively, per unit volume of a porous medium. In biological tissues,

they represent the rate of fluid flow per unit volume from blood vessels into the interstitial space

and from the interstitial space into lymph vessels, respectively.

The equation for momentum balance in porous media is Darcy’s law, introduced earlier. In a

homogeneous and isotropic medium, Darcy’s law can be written as

v = −H∇p, (15)

where ∇p is the gradient of the hydrostatic pressure and H is a constant defined as the hydraulic

conductivity. Note that p is defined as the average quantity within the fluid phase in the REV.

For nonisotropic and heterogeneous media, H is a tensor and it depends upon the location in the

medium.

Substituting Equation (15) into (14), we get

−∇ · (H∇p) = φB − φL. (16)

Equations (15) and (16) are the governing equations for fluid flow in rigid porous media. A special

case of Equation (16) is

∇2p = 0, (17)

when H is a constant and φB = φL = 0. In this case, the interstitial fluid pressure is governed by

a Laplace equation.

9



FIG. 7: One-dimensional flow through a porous medium.

Example 3: Consider one-dimensional flow through a porous medium with hydraulic conduc-

tivity H (Figure 7). The thickness of the medium is h. The pressures at x = 0 and x = h are p1

and p2, respectively. Determine the pressure and velocity distributions in the medium. Assume

φB = φL = 0.

Solution: Let us start from the mass balance and momentum equations. In this problem,

φB = φL = 0 and the flow is one dimensional. Equations (15) and (16) then become, respectively,

(18)

and

(19)

Integrating Equation (19) twice, we get

(20)

where a1, and a2 are constants that can be determined from the boundary conditions of the pressure:

(21)

Thus,

(22)
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The velocity profile can be obtained by substituting Equation (22) into Equation (18). The result

is

(23)

For one-dimensional flow, one can see that the pressure decreases linearly as a function of distance

and the velocity is a constant in the medium.

If the gravitational force is not negligible, then Darcy’s law must be modified to read

v = −H(∇p− ρg), (24)

where ρ is the density of the fluid and g is the acceleration due to gravity. Equation (24) indicates

that the gravitational force can be neglected only when ∆p/L � ρg, where L is the distance over

which the change in pressure is ∆p.

The hydraulic conductivity is inversely proportional to the viscosity of the fluid µ. The product

of H and µ is defined as the specific hydraulic permeability k and depends only upon microscopic

structures of the porous medium. For porous media with simple structures, H or k can be predicted

theoretically.

Example 4: Determine the hydraulic conductivity and specific hydraulic permeability in the

same porous medium as that discussed in Example 1. Assume that the liquid is a Newtonian fluid.

Solution: Fluid flow in a circular cylinder is governed by Poiseuille’s law, which predicts the

dependence of the flow rate q on the pressure gradient:

(25)

The total flow rate Q across the porous medium is equal to the sum of the flow rates across all of

the cylinders; that is, Q = AnAq, where A is the cross-sectional area of the porous medium and

nA is the number of pores per unit area. By definition, the velocity v in the porous medium in the

axial direction of cylinders is equal to the total flow rate per unit area. Thus,

(26)
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Comparing this equation with Darcy’s law (Equation (15)), we derive

(27)

In Example 4, we assumed the cross section of pores to be circular. Analytical solutions of

fluid flow in noncircular, cylindrical pores have been derived by Kozeny (1927), on the basis of the

Navier-Stokes equation. Kozeny found that

H =
cε3

µs2
, (28)

where ε is the porosity, s is the specific surface, defined by Equation (1), and c is a shape factor,

also called the Kozeny constant. Some examples of c are given in Table 8.1.

For noncylindrical pores (Figure 1), a more general equation for calculating K is the Kozeny-

Carman equation,

H =
ε3

Gµs20(1− ε)2
, (29)

where G is also called the Kozeny constant in the literature. The variable s0 is the Carman-specific

surface, defined as the area of the surface that is exposed to the fluid per unit volume of the solid

phase. For porous media with parallel, cylindrical pores, s = s0(1 − ε) and G is equal to 1/c. In

this case, Equation (29) reduces to Equation (28). In other porous media, G is equal to 1/(Tc)

(which is less than 1/c), where T is the tortuosity defined in Equation (9).
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3.2 Brinkman equation

The interstitial space can be considered a network of channels filled with porous media. Fluid

flow in such channels may not be modeled correctly by Darcy’s law, because the fluid velocity

in Darcy’s model does not satisfy the no-slip boundary condition on the channel wall. From the

physical point of view, Darcy’s law assumes that the viscous resistance at the fluid-solid interface

is much larger than that within the fluid. This assumption is valid, however, only when the specific

permeability k of porous media is low. That condition in turn implies a high fiber concentration in a

fiber matrix. The viscous stress within the fluid may not be negligible when k is large. In this case,

the momentum equation must be derived again, using the Stokes equation for low-Reynolds-number

flow. The result, called the Brinkman equation, is

µ∇2v − 1

H
v −∇p = 0. (30)

Darcy’s law, Equation (15), can be considered a special case of the Brinkman Equation (30) wherein

the first term can be neglected. In this case, the specific permeability k of the porous medium is

much less than the square of the characteristic length L over which macroscopic changes in fluid

velocity must be considered.

Example 5: Assume that the interstitial space between two cells can be considered to be a

porous channel bounded by two parallel plates (Figure 8). The effective hydraulic conductivity in

the channel Hchannel, defined as the ratio of the fluid flux to the pressure gradient, depends on

the specific hydraulic permeability in the porous medium k and the interaction of fluid with the

channel wall. The channel height h is much smaller than the size of cells. Therefore, the flow can

be assumed to be unidirectional. Derive the velocity profile and the expression of Hchannel as a

function of k, h, and the dynamic viscosity of the fluid µ.

Solution: The flow is unidirectional in the channel and is governed by the mass balance

equation and the Brinkman equations. With φB = φL = 0, Equations (14) and (30) become,

respectively,
∂vx
∂x

= 0, (31)
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FIG. 8: Fluid flow in a channel that separates two cells. The channel represents the interstitial

space filled with extracellular matrix and interstitial fluid. It can be modeled as a uniform porous

medium. The height of the channel is denoted by h.

−∂p
∂y

= 0, (32)

µ
∂2vx
∂y2

− µ

k
vx −

∂p

∂x
= 0. (33)

Equations (31) and (32) indicate that vx is independent of x and p is independent of y, respectively.

Thus, Equation (33) becomes

µ
d2vx
dy2

− µ

k
vx =

dp

dx
. (34)

The right hand side of the equation is a function of x, whereas the left of the equation is function

of y. Therefore, the only possibilities that both sides are independent of x and y (i.e., they are

equal to constant). If we denote B = dp/dx and rearrange terms in Equation (34), we get

d2vx
dy2

− 1

k
vx =

B

µ
. (35)

The general solution of Equation (35) is

vx = c1 sinh

(
y√
k

)
+ c2 cosh

(
y√
k

)
− k

µ
B, (36)

where c1 and c2 are constants that can be determined from the boundary conditions of vx, namely,

dvx
dy

= 0 at y = 0 (37)

and

vx = 0 at y = h/2. (38)
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Substituting the boundary conditions into Equation (36), we get

vx = −k
µ
B

[
1− cosh(y/

√
k)

cosh(h/(2
√
k))

]
. (39)

The fluid flux q is equal to the flow rate per unit cross-sectional area:

q =
1

h

∫ h/2

h/2
vxdy = −k

µ
B

[
1− 2

√
k

h
tanh

(
h

2
√
k

)]
. (40)

The effective hydraulic conductivity of the channel is defined as the ratio of the fluid flux to the

pressure gradient. Thus,

Hchannel =
q

−B
=
k

µ

[
1− 2

√
k

h
tanh

(
h

2
√
k

)]
. (41)

Hchannel can be normalized by k/µ, which is the hydraulic conductivity of the porous medium within

the channel. Equation (41) indicates that the ratio of Hchannel to k/µ depends only on h/
√
k. This

dependence is plotted in Figure 9. The plot demonstrates that the effect of the channel wall on

the fluid flow is less than 10% if h/
√
k > 20. In that case, Hchannel ≈ k/µ and the momentum

equation can be approximated by Darcy’s law. From this example, one can observe that
√
k is a

characteristic length scale that determines the validity of Darcy’s law.

FIG. 9: The dependence of Hchannel on ξ = h/
√
k.
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Taylor Hydrodynamic Dispersion & Its Implications on Modern Computation
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Second, we solve for Taylor dispersion DT: DT = −Nu (overbar denotes an average cross 
the channel cross-section)

where the function N is governed by the following ordinary differential equation:

Governing equation:

Boundary conditions:

D∇i
2N = u − u (subscript i denotes direction transverse to the 

unidirectional flow, e.g. r in circular channel flow)

No flux condition at channel walls and/or
symmetry condition about channel centerline

To evaluate Taylor dispersion coefficient



Working examples for computing Taylor dispersion

coefficients for steady unidirectional flows

1 Pressure-driven flow in a circular tube

Our goal is to obtain the Taylor dispersion coefficient for a steady, laminar pressure-driven flow

in a circular tube. The unidirectional flow is directed along the axial direction x. For a tube of

radius R, the velocity and cross-sectionally averaged velocity profiles are, respectively,

u(r) =
KR2

4µ

[
1 −

( r
R

)2]
= 2u

[
1 −

( r
R

)2]
, (1)

u =
KR2

8µ
, (2)

where r is the radial position inside the channel. The cross-sectional average of a quantity is defined

by (·) = (1/πR2)
∫ 2π
0

∫ R
0 (·)rdrdθ with θ being the angular position.

The Taylor dispersion coefficient is given by

DT = −Nu. (3)

To solve for the Taylor dispersion coefficient, first we need to solve the following ordinary differential

equation for the parameter N :

Governing equation: D
1

r

d

dr

(
r
dN

dr

)
= u− u (4)

Boundary conditions: D
dN

dr
= 0 at r = 0, R, (5)

Integrating (4) once gives

(6)

where c1 is an integration constant to be determined. Applying the boundary condition at r = 0

gives c1 = 0. Using this result and further integrating (6) once gives

(7)

1



where c2 is an integration constant to be determined. Due to the nature of the ordinary differential

equation, the second boundary condition cannot be imposed to determine c2. However, researchers

have found that the second boundary condition can be replaced by

(8)

Applying (8) to (7), we obtain c2 = −uR2/12D. Substituting this result into (7) gives

(9)

Finally, we substitute (1) and (9) into (3). After some algebra, we obtain the Taylor dispersion

coefficient as

(10)

2 Pressure-driven flow in a parallel-plate channel

Our goal is to obtain the Taylor dispersion coefficient for a steady, laminar pressure-driven flow

in a parallel-plate channel. The unidirectional flow is directed along the axial direction x. For a

channel of height h, the velocity and cross-sectionally averaged velocity profiles are, respectively,

u(y) =
Kh2

2µ

[
y

h
−
(y
h

)2]
= 6u

[
y

h
−
(y
h

)2]
, (11)

u =
Kh2

12µ
, (12)

where K = −dp/dx is the axial pressure gradient, y is the direction perpendicular to the channel

walls, and µ is the fluid dynamic viscosity. The cross-sectional average of a quantity is defined by

(·) = (1/h)
∫ h
0 (·)dy.

As we discussed in class, the Taylor dispersion coefficient is given by

DT = −Nu. (13)
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To solve for the Taylor dispersion coefficient, first we need to solve the following ordinary differential

equation for the parameter N :

Governing equation: D
d2N

dy2
= u− u (14)

Boundary conditions: D
dN

dy
= 0 at y = 0, h, (15)

where D is the intrinsic diffusivity of the species. Integrating (14) once gives

(16)

where c1 is an integration constant to be determined. Applying the boundary condition at y = 0

gives c1 = 0. Using this result and further integrating (16) once gives

(17)

where c2 is an integration constant to be determined. Due to the nature of the ordinary differential

equation, the second boundary condition cannot be imposed to determine c2. However, researchers

have found that the second boundary condition can be replaced by

(18)

Applying (18) to (17), we obtain c2 = uh2/60D. Substituting this result into (17) gives

(19)

Finally, we substitute (11) and (19) into (13). After some algebra, we obtain the Taylor disper-

sion coefficient as

(20)
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